
Condensed Matter Physics 2 - Problem Set 3

In this problem, we will look at how screening changes the nature of quasiparticle excitations in systems,
beginning with the former and the Thomas-Fermi approximation. The Thomas-Fermi approximation
can be thought of in the following way. Suppose a metal has a Fermi energy at EF . Now consider an
isolated piece of the same material with the band structure shifted due to some external potential U .
When these two samples are contacted, the overall Fermi energy is equalized, and the additional electron
density is nind. This new Fermi level is content through the entire volume.

So, suppose that the electrons in the metal are subjected to a potential of the form

U (r) = A (q) exp (iq · r) + cc.

1. What is the electric field associated with the potential U?

2. The resulting induced charge density is given by nind = −n (EF )U (r) with n (EF ) being the charge
density at the original EF . The indicted polarization and density are related by ∇ ·Pind = enind.
Show that Pind is given by

Pind (r) = i
en (EF )

q2
qA (q) exp (iq · r) + cc.

3. Use the results from parts 1 and 2 to show that the static dielectric function is given by

ϵ(q) = 1 +
4πe2n (EF )

q2
.

We can set kT =
√

4πe2n (EF ) and write ϵ (q) = 1+k2T/q
2. Here, kT is known as the Thomas-Fermi

screening wave vector.

4. What does kT physically represent? To find out, consider a medium with a point charge (Ze)
placed at the origin. The total potential energy of this system can be written (by employing a
Fourier transform) as

U (r) = −
1

(2π)3

∫

1

ϵ (q)

4πZe2

q2
exp (iq · r) dq.

Use the result of part 3 and evaluate the integral to find the form of U(r). What is the physical
interpretation of kT ?

5. Now lets see how screening can impact the quasiparticle excitations of a system. We will do this
using a different formulation of the (dynamic) dielectric function, the Lindhard dielectric function
given by

ϵ (q,ω) = 1 +
8πe2

V q2

∑

k

f (k)− f (k+ q)

E (k+ q)− E (k) − !ω − iη
.

To begin, consider a simple semiconductor characterized by a parabolic conduction band. In this
case, The Lindhard function can be solved analytically, and for small q

ϵ (q,ω) = 1−
ω2
p

(ω + iη/!)2
−

3

5

ω2
p

(ω + iη/!)4
!2k2F
m

q2 − · · ·

Choosing appropriate values of ωp, η, kF , and m, plot ϵas a function q and ω. The roots of the
dielectric function are related to the plasmon excitations of the system. Isolate values of q and ω
for which ϵ = 0. How does ω vary as a function of q?

6. Using part 3, modify the expression in part 5 to include a Thomas-Fermi screening term. Again,
plot ϵas a function q and ω. Isolate values of q and ω for which ϵ = 0. How does ω vary as a
function of q?

The dramatic difference in q-dependence between two systems shows that strong screening leads to a
new type of quasiparticle excitation.

1


