Condensed Matter Physics I

Prof. Dr. Ir. Paul H.M. van Loosdrecht II Physikalisches Institut, Room 312 E-mail: pvl@ph2.uni-koeln.de

Website: http://www.loosdrecht.net/

Today

- Fermi surfaces (Kittel Ch.9)
- Semiconductors (Kittel Ch.8)

Extended zone scheme

Reduced zone scheme

Brillouin zones in 2D

Brillouin zones in 2D

Brillouin zones in 2D

 $N_e = 1$ (examples: Cu,Ag,Au) $k_F a/2\pi = (3/2\pi)^{1/3} = 0.78$

 $|L| a/2\pi = |(0.5, 0.5, 0.5)| = 0.87$

 $|X| a/2\pi = |(1,0,0)| = 1.0$

$$V_{BZ}/(2\pi)^3 = 4/a^3$$

 $N_e = 2$ (examples: Ca, Sr) $k_F a/2\pi = (3/\pi)^{1/3} = 0.98$

 $N_e = 3$ (examples: AI, Ce, Th) $k_F a/2\pi = (9/\pi)^{1/3} = 1.13$

 $|N| a/2\pi = |(0.5, 0.5, 0)| = 0.71$ $|P| a/2\pi = |(0.5, 0.5, 0.5)| = 0.87$ $|H| a/2\pi = |(1, 0, 0)| = 1$ $V_{BZ}/(2\pi)^3 = 2/a^3$

 $N_e = 1$ examples: Li,Na,K,Rb,Cs $k_Fa/2\pi = (3/4\pi)^{1/3} = 0.62$

bcc

 $N_e = 2$ examples: Ba $k_F a/2\pi = (6/4\pi)^{1/3} = 0.78$

Free e⁻ + periodic potential

- Band structure, gaps, metals & insultators
- Effective mass $E = \frac{\hbar^2 k^2}{2m^*} \rightarrow m^*(k) = \hbar^2 \left[\frac{\partial^2 E}{\partial k^2} \right]^{-1}$
- E.O.M. (see Kittel appendix E & pages 205-206)
- Fermi surface

Constant E surface for relevant electrons

SEMI-CONDUCTORS

Kittel Ch. 8, Ch. 19

PvL CMP-WS 16/17

Semiconductors

Direct gap / Indirect gap Intrinsic / Extrinsic Homogeneous / Inhomogeneous

Direct gap: GaAs

PvL CMP-I WS 16/17

Direct gap: GaAs, absorption

 $I(\omega) = I_0 e^{-\alpha(\omega) \cdot d}$

Indirect gap: Silicon

PvL CMP-I WS 16/17

Indirect gap, Si absorption

Missing electron in a filled band acts as a particle (*hole*) with:

Cyclotron resonance

 ω_{c}

Dresselhaus et al., Phys. Rev. 98, 368 (1955)

Carrier density

Intrinsic case

Density:
$$n_i \equiv p_i = \sqrt{n_o p_o} \cdot e^{-\frac{E_g}{k_b T}}$$

From n = p:

$$\begin{split} & \frac{\mu - E_c}{k_b T} = p_0 \cdot e^{\frac{E_v - \mu}{k_b T}} \\ & E_F = \mu = \frac{1}{2} E_g + \frac{3}{4} k_b T \cdot ln \left(\frac{m_h^*}{m_e^*}\right) \end{split}$$

Extrinsic case

'H problem' with $e^2 \rightarrow e^2/\epsilon$ & $m \rightarrow m^*$ Ionization energy 1 'Ry': $E_d = \frac{m^* e^4}{2\hbar^2 \epsilon^2} = \frac{m^*}{m_0} \frac{1}{\epsilon^2} \cdot 13.6 \text{ eV}$ 'Bohr' radius: $r_d = \frac{\hbar^2 \epsilon}{m^* e^2} = \frac{m_0}{m^*} \epsilon \cdot a_0$

WS 16/17

Donor and acceptor levels (meV)

	Р	As	Sb	В	Al	Ga	In
Si	45	49	39	45	57	65	157
Ge	12	13	10	10	10	11	11

P-N Junction

Other heterogeneous S.C.

Recombination: $e^- + h^+ \rightarrow \gamma$ LED and Semiconductor laser

GaAs_{1-x}P_x In_xGa_{1-x}N/Al_yGa_{1-y}N

p-type

n-type

SC lasers

- Storage CD/DVD, MO
- Eye, artery, dental Surgery
- Diagnostic (Caries, Cancer)
- Environmental monitoring
- Remote sensing (speed, chemicals)
- Motion control
- Star Wars, guns

Heterostructure

Heterostructure: Lateral confinement => 2 DEG

MOSFET 2DEG

PvL CMP-I WS 16/17

Band diagram MOSFET

Integer Quantum Hall effect on Si-MOSFET Nobel prize von Klitzing, 1985

Fractional quantum hall effect

PvL CMP-I WS 16/17

Composite fermions

