## Condensed Matter Physics I

Prof. Dr. Ir. Paul H.M. van Loosdrecht

II Physikalisches Institut, Room 312

E-mail: pvl@ph2.uni-koeln.de

Website: http:/www.loosdrecht.net/

#### Previously

- Free electron model
- Density of states, Fermi-Dirac distribution
- Pressure, Bulk modulus, Heat capacity,
   Thermal mass
- Charge conductivity

## Today

- Transport
- Failures of the free electron model
- Incorporating periodicity

#### Classical Hall effect

Transport equation: 
$$\hbar \left( \frac{d}{dt} + \frac{1}{\tau} \right) k = F = q \left( E + \frac{k}{m} \times B \right)$$

Steady state: 
$$\hbar \vec{k} = -e\tau \left( \vec{E} + \frac{\hbar}{m} \vec{k} \times \vec{B} \right)$$

$$E_y = R_H \cdot j_x B_\perp$$



#### Thermal conductivity

$$J = -\kappa \cdot \nabla T$$

Electronic heat conductivity: 
$$\kappa = \frac{1}{3}C_{el} \cdot v \cdot l = \frac{\pi^2 k_b^2 n \tau}{3m}T$$

Wiedemann-Franz law: 
$$\frac{\kappa}{\sigma} = \frac{\pi^2 k_b^2 n \tau}{3m} T \cdot \frac{m}{ne^2 \tau} = L \cdot T$$

Lorenz number 
$$L = \frac{\pi^2}{3} \left(\frac{k_b}{e}\right)^2 = 2.45 \cdot 10^{-8} \frac{W \cdot \Omega}{K^2}$$

| <b>Table 10-2</b> and 100°C | Lorentz num | $ber L = K/\sigma T in u$ | inits of $10^{-8}~\mathrm{W}\cdot\Omega$ | /K <sup>2</sup> , for several 1 | netals at 0°C |
|-----------------------------|-------------|---------------------------|------------------------------------------|---------------------------------|---------------|
| Metal                       | 0°C         | 100°C                     | Metal                                    | 0°C                             | 100°C         |
| Ag                          | 2.31        | 2.37                      | Pb                                       | 2.47                            | 2.56          |
| Au                          | 2.35        | 2.40                      | Pt                                       | 2.51                            | 2.60          |
| Cd                          | 2.42        | 2.43                      | Sn                                       | 2.52                            | 2.49          |
| Cu                          | 2.23        | 2.33                      | W                                        | 3.04                            | 3.20          |
| Mo                          | 2.61        | 2.79                      | Zn                                       | 2.31                            | 2.33          |

#### Free electron model: failures

- Hall coefficient
- Magnetoresistance
- Wiedemann-Franz law
- T-dependence of cond., thermal cond.
- Direction dependence of conductivity —
- AC conductivity
- Linear term in specific heat
- Compressibility of metals



NaV<sub>6</sub>O<sub>15</sub> Yamada,Ueda JPSJ **68,** 2735 (1999)

- What determines the electron density
- Why are some materials bad metals or even isolators

#### e in a periodic potential

- Bragg scattering of free electrons, gaps
- Effect of translational symmetry, Bloch theorem
- Reduced Brillouin zone, Energy bands
- Weak potentials, perturbation theory
- Photo emission

## Incorporating the periodic potential

$$V(\vec{r}) = V(\vec{r} + \vec{R}_{\vec{n}}) \qquad \vec{R}_{\vec{n}} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$
$$\left(\frac{-\hbar^2}{2m} \nabla^2 + V(\vec{r})\right) \Psi_{\lambda} = E_{\lambda} \Psi_{\lambda}$$

- Empty lattice
- Weak potential (nearly free electron model, perturbation)
- Strong potential (tight binding (LCAO))

## Bragg scattering



# TRANSLATIONAL SYMMETRY

When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal....

By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation

F. BLOCH

## Translational symmetry

$$V(\vec{r}) = V(\vec{r} + \vec{R}_{\vec{n}}) \qquad \vec{R}_{\vec{n}} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$
$$\left(\frac{-\hbar^2}{2m} \nabla^2 + V(\vec{r})\right) \Psi_{\lambda} = E_{\lambda} \Psi_{\lambda}$$

Translation operator:  $T_{\vec{n}}\psi(\vec{r}) \equiv \psi(\vec{r} + \vec{R}_{\vec{n}})$ 

Translationally invariant Hamiltonian:  $[H,T_{\vec{n}}]=0$ 

$$\mathsf{T}_{\vec{\mathsf{n}}} \cdot \mathsf{H} \Psi_{\lambda} = \mathsf{H} \cdot \mathsf{T}_{\vec{\mathsf{n}}} \Psi_{\lambda} = \mathsf{E}_{\lambda} \; \mathsf{T}_{\vec{\mathsf{n}}} \Psi_{\lambda}$$

If  $\Psi_{\lambda}$  is an eigenstate with energy  $E_{\lambda}$ , so is  $T_{\vec{n}}\Psi_{\lambda}$ !

#### Bloch theorem

$$\begin{split} T_{100} \big| \psi_{\lambda} \big\rangle &= e^{i \phi_{\lambda,1}} \big| \psi_{\lambda} \big\rangle \quad T_{200} \big| \psi_{\lambda} \big\rangle = e^{i \phi_{\lambda,1}} e^{i \phi_{\lambda,1}} \big| \psi_{\lambda} \big\rangle \; .... \\ \Rightarrow T_{nml} \big| \psi_{\lambda} \big\rangle &= e^{i \left(n \phi_{\lambda,1} + m \phi_{\lambda,2} + l \phi_{\lambda,3}\right)} \big| \psi_{\lambda} \big\rangle = e^{i \left(n \vec{a}_{1} + m \vec{a}_{2} + l \vec{a}_{3}\right) \cdot \vec{k}} \big| \psi_{\lambda} \big\rangle \end{split}$$

The vectors k label the eigenstates:  $|\psi_{\lambda}\rangle = |\psi_{\vec{k}}\rangle$ 

$$|\psi_{\lambda}
angle = |\psi_{ec{k}}
angle$$



$$T_{\vec{n}}\Psi_{\vec{k}}(\vec{r}) = \Psi_{\vec{k}}(\vec{r} + \vec{R}_{\vec{n}}) = e^{i \vec{k} \cdot \vec{R}_{\vec{n}}}\Psi_{\vec{k}}(\vec{r})$$

#### **Bloch theorem**



The eigenstates of a periodic one-electron Hamiltonian can be chosen to have the form of a plane wave times a function with the periodicity of the Hamiltonian

Bloch: 
$$\Psi_{\vec{k}}(\vec{r}) = e^{i k \cdot \vec{r}} u_{\vec{k}}(\vec{r})$$
  
 $u_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r} + \vec{R})$ 

The functions  $u_{\vec{k}}(\vec{r})$  are translational invariant  $\Rightarrow$  3D fourier expansion of a periodic function

$$u_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} u_{\vec{k},\vec{G}} e^{i \vec{G} \cdot \vec{r}}$$

$$\Rightarrow \Psi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} u_{\vec{k},\vec{G}} \cdot e^{i(\vec{k}+\vec{G})\cdot\vec{r}}$$

#### Electrons in a periodic potential

$$\begin{split} H &= \frac{-\hbar^2}{2m} \nabla^2 + V(\vec{r}) \\ V(\vec{r}) &= \sum_{\vec{G}} V_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} \\ \Rightarrow \left\langle \vec{q} \right| H \left| \vec{k} \right\rangle &= \frac{\hbar^2 k^2}{2m} \delta_{\vec{q},\vec{k}} + \sum_{\vec{G}} V_{\vec{G}} \delta_{\vec{q},\vec{k}+\vec{G}} \end{split}$$

Each free e<sup>-</sup> state k couples to all states k+G!

Eigenstates 
$$\left|\psi_{\vec{k}}\right\rangle = \sum_{\vec{G}} \alpha_{\vec{G}} \left|\vec{k} + \vec{G}\right\rangle$$

Energies  $E_{\vec{k}} = \frac{\hbar^2}{2m} \sum_{\vec{G}} \left|\alpha_{\vec{G}}\right|^2 \left|\vec{k} + \vec{G}\right|^2 + \sum_{\vec{G},\vec{Q}} \alpha_{\vec{G}} \alpha_{\vec{Q}}^* V_{\vec{Q}-\vec{G}}$ 

#### Reduced Brillouin zone



#### Perturbation theory

$$\begin{split} \left| \psi_{k} \right\rangle &= \frac{1}{C} \left\{ \left| \vec{k} \right\rangle + \sum_{\vec{G} \neq 0} \frac{V_{\vec{G}}}{E_{\vec{k}}^{(0)} - E_{\vec{k} + \vec{G}}^{(0)}} \left| \vec{k} + \vec{G} \right\rangle \right\} \\ \left| C \right|^{2} &= 1 + \sum_{\vec{G} \neq 0} \left| \frac{V_{\vec{G}}}{E_{\vec{k}}^{(0)} - E_{\vec{k} + \vec{G}}^{(0)}} \right|^{2} \\ \left| C \right|^{2} E_{\vec{k}} &= E_{\vec{k}}^{(0)} + V_{\vec{0}} + \sum_{\vec{G} \neq 0} \frac{\left| V_{\vec{G}} \right|^{2}}{E_{\vec{k}}^{(0)} - E_{\vec{k} + \vec{G}}^{(0)}} \end{split}$$

Large contribution when E<sub>k</sub>≈ E<sub>k+G</sub>

#### Near zone boundary

$$\left|\psi_{k}\right\rangle \approx a_{0}\left|\vec{k}\right\rangle + a_{\bar{b}}\left|\vec{k} + \vec{b}\right\rangle$$

$$H \approx \begin{bmatrix} E_k^{(0)} & V_{\vec{b}} \\ V_{\vec{b}} & E_{k+\vec{b}}^{(0)} \end{bmatrix}$$

$$\Rightarrow E_{k} = \frac{1}{2} \Big[ E_{k}^{(0)} + E_{k+\bar{b}}^{(0)} \Big] \pm \frac{1}{2} \sqrt{ \Big( E_{k}^{(0)} - E_{k+\bar{b}}^{(0)} \Big)^{2} + 4 V_{b}^{2}}$$



If 
$$E_k^0 = E_{k+b}^0 \rightarrow E_k = E_k^0 \pm V_b$$

## Band structure: Approaches

- Empty lattice (only periodicity)
- Perturbation theory (nearly free electrons, weak potential)
- Tight binding method (LCAO)
- Exact models (Kronig-Penney model, see for instance Kittel)
- 'advanced' methods: see for instance ashcroft and mermin, chapter 11

## Band structure: Approaches

- Empty lattice (only periodicity)
- Perturbation theory (nearly free electrons, weak potential)
- Tight binding method (LCAO)
- Exact models (Kronig-Penney model, see for instance Kittel)
- 'advanced' methods: see for instance ashcroft and mermin, chapter 11

#### Diamond band structure

VOLUME 16, NUMBER 9

PHYSICAL REVIEW LETTERS

28 February 1966



#### FIG. 1. The electronic band structure of diamond,

#### BAND STRUCTURE AND OPTICAL PROPERTIES OF DIAMOND\*

W. Saslow,† T. K. Bergstresser, and Marvin L. Cohen‡ Department of Physics, University of California, Berkeley, California (Received 27 January 1966)

#### Electronic band structure of the superconductor Sr<sub>2</sub>RuO<sub>4</sub>

#### Tamio Oguchi

Department of Materials Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 724, Japan (Received 28 September 1994; revised manuscript received 8 November 1994)



FIG. 1. Calculated energy band structure of Sr<sub>2</sub>RuO<sub>4</sub> along high-symmetry lines. A horizontal broken line denotes the Fermi energy.



FIG. 3. Calculated density of states (DOS) of  $Sr_2RuO_4$ : (a) total DOS, (b) partial Ru d DOS, and (c) partial O p DOS. In panel (c), solid and dotted curves represent the partial p DOS of the O(I) and O(II) atoms, respectively. A vertical line denotes the Fermi energy.



FIG. 2. An ab-plane contour map of the pseudocharge density of the antibonding de(xy)- $p\pi$  band at the X point (the 15th band in Fig. 1). Contours of charge density are plotted as  $(2)^{n/2} \times 10^{-3}$  electrons/bohr<sup>3</sup>  $(n=0,1,\ldots)$ . A clear node (zero amplitude of the wave function) between the Ru (at center) and four O(f) atoms indicates the antibonding character of the state.

#### **Photoemission**

$$E_{bind} = \hbar\omega - E_{kin} - \phi$$

$$\hbar k_{||}^{i} = \hbar k_{||}^{f} = \sqrt{2mE_{kin}} \sin \theta$$





#### **Photoemission**

Volume 89, Number 15

PHYSICAL REVIEW LETTERS

7 October 2002

#### **Bulk Band Gaps in Divalent Hexaborides**

J. D. Denlinger

Advanced Light Source, Lawrence Berkeley National Laborato

J. A. Clack, J.W. Allen, and G.-H. C

Randall Laboratory, University of Michigan, Ann Arbo

D. M. Poirier\* and C. G. Olson

Ames Laboratory, Iowa State University, Ame

J. L. Sarrao, † A. D. Bianchi, † and Z

National High Magnetic Field Lab and Department of Physics, Florida St



FIG. 1. Comparison of the experimental and theoretical band structures of  $CaB_6$  along  $\Gamma$ -X. The reverse gray scale image of ARPES intensities is the sum of two data sets with 30 eV s-and p-polarized excitation. Dashed lines are from the quasiparticle GW calculation [18] giving X-point gap between bands 0 and 1.



#### Photoemission

