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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 

The use of clear and compact notation is greatly encouraged, as well as the systematic use of 

dimensional checks of the expressions and results. When you are asked to “evaluate” 

something this means to provide a numerical evaluation of the expression. In this case, at 

times, it might be necessary to indicate a parameter whose explicit numerical value is not 

provided, i.e. 𝜔𝑐 = 1.76 𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 

given with 3 significant figures. 

 

4.1  Nearly-free electrons in Dirac-delta potential         (10 pts) 

Atoms are arranged in one-dimensional chain with lattice spacing a. Each atom is 

represented by the potential 𝑎𝑉0𝛿(𝑥).  

1. Assuming that the nearly-free electron approximation applies, calculate the bandgap 

for all the electronic bands.  

 

2. Consider the band near k=0. Using the second order perturbation theory write the 

expression for the the nearly-free electron band. 

 

3. The effective mass of an electron around the gamma point can be written as  
ℏ2

𝑚∗ =
𝜕2𝐸

𝜕𝑘2|
𝑘=0

. By performing the derivative under the sum sign give the expression 

for the effective mass as a function of the potential parameters.  

 

4. Let now a=aB. How large should be V0 to have m*=1.1me? Evaluate V0 in appropriate 

units (eV, Ry or Hartree). Is that a strong potential on the atomic scale? What would 

you compare it with to decide? What happens if the potential changes sign? 

Comment.  

Hint: ∑ 𝑛−4 = 𝜋4 90⁄ .∞
𝑛=1  
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4.2   Current in a Landau Level           (10 pts) 

Let us consider 2D free electron in a magnetic field B. In the Landau Gauge the vector  

potential is 𝐀 = (0, 𝐵𝑥). The Hamiltonian is 

𝐻 =
ℏ2

2𝑚
[−

𝜕2

𝜕𝑥2
+ (−𝑖

𝜕

𝜕𝑦
+

𝑥

ℓ2
)

2

], 

Where ℓ = √ℏ𝑐 𝑒𝐵⁄ .  Note that the component of the velocity operator are 𝑣𝑥 = −
𝑖ℏ

𝑚

𝜕

𝜕𝑥
 and 

𝑣𝑦 =
ℏ

𝑚
(−𝑖

𝜕

𝜕𝑦
+

𝑥

ℓ2
). The levels for this Hamiltonian are discreet and the eigenfunctions at 

the lowest level can be chosen as 

𝜓𝑘(𝑥, 𝑦) = 𝑒𝑖𝑘𝑦𝜒(𝑥 + ℓ2𝑘),          𝜒(𝑥) = (
1

𝜋ℓ2
)

1 4⁄

𝑒−𝑥2 2⁄ ℓ2
, 

where 𝑘 is a real number. The 𝜒(𝑥) is normalized over  (−∞, ∞). 

1. Calculate the current on the generic state 𝑘, disregarding the normalization: 

 

𝑗𝑥(𝑥, 𝑦) ∝ 𝜓𝑘
∗ (𝑥, 𝑦)𝑣𝑥𝜓𝑘(𝑥, 𝑦) + 𝑐. 𝑐.     and      𝑗𝑦(𝑥, 𝑦) ∝ 𝜓𝑘

∗ (𝑥, 𝑦)𝑣𝑦𝜓𝑘(𝑥, 𝑦) + 𝑐. 𝑐. 

 

2. Impose now periodic boundary condition along 𝑦: 𝜓𝑘(𝑥, 𝑦) = 𝜓𝑘(𝑥, 𝑦 + 𝐿). This 

allows only some values of k to be admissible. Which ones? Write the generic 

wavefunction normalized over the appropriate cell. 

3. Let us now consider non interacting electrons occupying all the allowed k´s. Obtain 

the density 

𝑛(𝑥, 𝑦) = ∑ |𝜓𝑘(𝑥, 𝑦)|2.

𝑘 𝑎𝑙𝑙𝑜𝑤𝑒𝑑

 

How this density depends from the y direction? Is the density n periodic along x? with 

which period? 

 

4.3  Degenerate semiconductor            (10 pts) 

Consider a semiconductor for which the non-degeneracy condition is not verified. In other 

words you cannot assume 𝜖𝑐 − 𝜇 ≫ 𝐾𝐵𝑇 and 𝜇 − 𝜖𝑐 ≫ 𝐾𝐵𝑇. However, for this 

semiconductor the following relation 

𝑔𝑣(𝜖) = 𝑔𝑐(−[𝜖 − 𝐸0] + 𝐸0) 

holds. Here 𝑔𝑣(𝜖) 𝑎𝑛𝑑 𝑔𝑐(𝜖) are the DOS of the valence and conduction bands and 

2𝐸0 = 𝜖𝑐 + 𝜖𝑐. Moreover it is possible to neglect the impurity (intrinsic regime). 

1. Assume that the top of the conduction band is at the energy 𝜖𝑐 + 2Δ. Draw a 

qualitative drawing of the density of states 𝑔𝑐(𝜖), paying attention to its behavior at 
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the two band extrema. In particular specify the qualitative behavior of the DOS at 

those points. 

2. By making use of the above-written relation, draw on the same graph 𝑔𝑐(𝜖) and 

𝑔𝑣(𝜖). 

3. Write the condition that determines the chemical potential and, by rearranging in a 

simple way one of the integrals, determine the chemical potential 𝜇 at every 

temperature. [Note: no explicit integration is needed! Moreover, put the energy zero 

at the half of the gap, in such a way that 2𝐸0 = 𝜖𝑐 + 𝜖𝑐 = 0.] 

4. Consider now a density of states of the form 𝑔𝑐(𝜖) = 𝐴√(𝜖 − 𝜖𝑐)(2Δ − 𝜖 + 𝜖𝑐). 

Determine the constant A in terms of the density of lattice sites 𝑛𝐿 and Δ. 

5. Express the effective mass at the bottom of the conduction band in terms of 𝑛𝐿 and 

Δ. Knowing that 𝑛𝐿 = 5.00 × 1022 𝑐𝑚−3 and that Δ = 27.7 eV evaluate the ratio 

𝑚𝑐 𝑚𝑒⁄ . 

Note: ∫ 𝑑𝑥√1 − 𝑥2 = [𝑥√1 − 𝑥2 + 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥] 2⁄ . 

 


