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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 

The use of clear and compact notation is greatly encouraged, as well as the systematic use of 

dimensional checks of the expressions and results. When you are asked to “evaluate” 

something this means to provide a numerical evaluation of the expression. In this case, at 

times, it might be necessary to indicate a parameter whose explicit numerical value is not 

provided, i.e. 𝜔𝑐 = 1.76 𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 

given with 3 significant figures. 

 

5.1  Two-charge-carrier Drude Model           (10 pts) 

In treating the Hall problem in the presence of a magnetic field H along the z axis, it is 

useful to resort to the tensor formalism to link the components of the in-plane 

electric field and current:  

𝑬 = 𝜌̂𝒋 

where the resistivity tensor 𝜌̂ depends on the longitudinal resistivity 𝜌 and the Hall 

resistivity 𝑅𝐻: 

𝜌̂ = (
𝜌 −𝑅𝐻𝐻

𝑅𝐻𝐻 𝜌
). 

 

For a  single carrier in the Drude model we have 𝜌 =
1

𝜎
=

1

𝑛𝑒2𝜇
 and 𝑅𝐻 =

1

𝑛𝑒𝑐
. 

Consider now a system with two types of charge carriers in the Drude model. The 

two carriers have the same density (n) and opposite charge (e and –e), and their 

masses and relaxation rates are m1, m2 and τ1, τ2, respectively. (You may want to use 

the mobility, μ=τ/m, instead of τ and m.) 

 

1. Introduce the two resistivity tensors 𝜌̂1  and 𝜌̂2 write down the equation linking 

the electric field and the two carrier currents j1 and j2.  
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2.  Invert the two equations by Introducing the inverse resistivity tensors 𝜌̂1
−1  and 

𝜌̂2
−1 ; write the equation giving the total current as a function of the applied field 

as a function of the total resistivity tensor 𝜌̂−1. What is the relation between 𝜌̂−1 

and 𝜌̂1
−1 and 𝜌̂2

−1? 

 

3. By explicitly inverting the resistivity tensors Find the components of 𝜌̂−1; 

calculate the total magnetoresistance Δ𝜌 = 𝜌(𝐻) − 𝜌(𝐻 = 0), where H is the 

magnetic field. 

 

4. Calculate the total Hall coefficient for the system. If the two mobilities are equal 

what is the value of the Hall coefficient? Why? 

 

5.2  Divalent impurities             (10 pts) 

Consider a semiconductior with a dielectric constant 𝜖 = 12.5 and a conduction effective 

mass 𝑚 = 0.067𝑚𝑒, doped with few divalent donors, that can thus be regarded as 

independent. Remember that the total binding energy of the He atom is 𝐸 = 5.81 𝑅𝑦. 

1. Write the expression and the numerical value (in eV) of the binding energy 𝜖1, 

respect to the conduction band, for a single electron on the donor. 

 

2. Write the expression and the numerical value (in eV) of the binding energy 𝜖2, after 

the addition of a second electron on the donor. 

 

3. Estimate the effective Bohr radius (in Å) of the impurity with one electron and judge 

if the “hydrogenic” approximation is reasonable. Do you expect that with two 

electrons the approximation gets better or worse? 

 

4. Compute the average occupation of these (independent) donor by computing a 

suitable average. How much is it at 𝑇 = 0? 

 

5. Determine the position of the chemical potential at 𝑇 → 0, in the hzpotesis that only 

the mentioned donors contribute. 

 

6. If 𝑁𝑑 is the density of the donor dopants and one adds (monovalent) acceptor 

dopants as well with density 𝑁𝑎 = 𝑁𝑑, where will the chemical potential will go as 

𝑇 → 0? 
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5.3  Transport properties in gapped Graphene    (10 pts) 

The bandstructure of graphene is well described by the tight-binding approximation. The 

peculiar degeneracy of energies at the six points in the reciprocal lattice (i.e. the vertex of 

the hexagonal FBZ constituting the Fermi surface) leads to a linear energy dispersion around 

those points, 𝐸(𝐤) = ℏ𝑣𝐹|𝐤|. 

Around 𝑘0, i.e. one of the six points belonging to the degeneracy  the Fermi energy is at 

𝐸𝐹 = 0 and the Fermi velocity is about 106ms-1. The excitations around the Fermi energy are 

well described by an effective 2x2 Hamiltonian: 

𝓗 = ( 
0 ℏ𝑣𝐹(𝑘̂𝑥 − 𝑖𝑘̂𝑦)

ℏ𝑣𝐹(𝑘̂𝑥 + 𝑖𝑘̂𝑦) 0
 ) 

Here the reduced wavenumber is 𝐤 = 𝐤´ − 𝐤0. Here the matrix notation describes the 

exsistance of two groups of non-equivalent Fermi points. This is called pseudospin. 

1. Find the energies and wavefunctions of the electrons. Evaluate the effective mass of 

the excitations near Fermi energy.  

[Hint: 𝑘̂𝑥 and 𝑘̂𝑦 are operators! Therefore the eigenfuctions are written as (
𝜓+

𝜓−
), with 

𝜓+ 2D spatial wavefunctions. To treat the problem, first choose a suitable base for 

the spatial part in which the operator 𝓗 reduces to a numerical matrix. Then proceed 

to its diagonalization.] 

 

2. Calculate the 2D density of states 𝑔0(𝜖)of the excitations near Fermi energy. 

 

Let us switch on an interaction that mixes the two pseudospin states in this way:  

ℋ∆ = ( 
∆ ℏ𝑣𝐹(𝑘𝑥 − 𝑖𝑘𝑦)

ℏ𝑣𝐹(𝑘𝑥 + 𝑖𝑘𝑦) −∆
 ) 

 

3. Find the energy eigenvalues. What happens to the band dispersion around Fermi? 

 

4. Calculate the effective mass tensor and the density of states 𝑔∆(𝜖) for the gapped 

system. Study the limit for Δ → 0. 

 

5. Give an expression the diagonal components of the conductivity tensor in 2D 

 

𝜎̂𝑖𝑗 = −𝑒2 ∫
𝑑𝐤

2𝜋2
𝑔∆(𝜖) (

𝜕𝑓0

𝜕𝜖
) 𝜏(𝐤)𝑣𝑖(𝐤) 𝑣𝑗(𝐤) 
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for a gapped graphene sheet.  In doing that you should bring out the density of state 

and the relaxation time and evaluate them at a specific energy. Which one? Why? 

Study the limit for Δ → 0. 

 

6. Using the formal results from the Sommerfeld Expansion study the behavior of the 

conductivity for T>0. 


