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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 
The use of clear and compact notation is greatly encouraged, as well as the systematic use of 
dimensional checks of the expressions and results. When you are asked to “evaluate” 
something this means to provide a numerical evaluation of the expression. In this case, at 
times, it might be necessary to indicate a parameter whose explicit numerical value is not 
provided, i.e. 𝜔𝜔𝑐𝑐 = 1.76 𝐻𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 
given with 3 significant figures. 

 

6.1  conductivity from impurities            (10 pts) 

Let us consider the semiconductor GaAs (gallium arsenide). It is a direct gap  semiconductor 
(𝐸𝐸𝑔𝑔 ≃ 1.52 𝑒𝑒𝑒𝑒 at room temperature; disregard its temperature dependence). The 
conduction band effective mass is 𝑚𝑚𝑐𝑐 = 0.068 𝑚𝑚𝑒𝑒 and the valence band  𝑚𝑚𝑣𝑣 = 0.41 𝑚𝑚𝑒𝑒. 
The dielectric constant is 𝜖𝜖 = 14.6. 

Let us assume to dope the semiconductor with donors and suppose to describe the status of 
the excess electrons with a hydrogenoid model. 

1. Calculate the binding energy 𝐸𝐸𝑑𝑑 (in eV) of the excess electrons with respect to the 
conduction band bottom. 
[The binding energy of the excess electron is the renormalized hydrogenoid ground 
state [Ashcroft Eq. 28.29] 

ℇ =
𝑚𝑚𝑐𝑐

𝑚𝑚
𝑅𝑅𝑅𝑅
𝜖𝜖2

=
0.068
14.62

13.6 eV = 4.34 meV. 

 ] 
2. Calculate the effective Bohr radius 𝑎𝑎𝐵𝐵∗  (in Å) of those electrons, assuming that each of 

them is in the fundamental hydrogenoid energy level. Is the value obtained 
compatible with the hydrogenoid model used? 
[The effective Bohr radius [Ashcroft Eq. 28.28] is 
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𝑎𝑎𝐵𝐵∗ =
𝑚𝑚𝑐𝑐

𝑚𝑚∗ 𝜖𝜖𝑎𝑎0 =
14.6

0.068
 0.53 Å = 114 Å 

] 
3. Assume that when the average distance between donor centers becomes 

comparable to 𝑎𝑎𝐵𝐵∗  the electron screen each other, becoming nearly-free electrons 
and being promoted to the conduction band. Evaluate the value 𝑛𝑛𝑐𝑐𝑐𝑐 of the donor 
(and electron) density 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐−3. 
[The critical donor center is 𝑛𝑛𝑐𝑐𝑐𝑐 = (𝑎𝑎𝐵𝐵∗ )−3 = 6.79 × 1017cm−3] 

4. Estimate the carrier density (electron and holes; 𝑛𝑛𝑐𝑐 + 𝑝𝑝𝑣𝑣 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐−3) of the undoped 
semiconductor at the temperature of T=100 K by using the data given in the 
preamble. 
[In the intrinsic case 𝑛𝑛𝑐𝑐 = 𝑝𝑝𝑣𝑣 = 𝑛𝑛𝑖𝑖, We can therefore apply the Equation 28.20 of the 
Ashcroft: 

𝑛𝑛𝑖𝑖(𝑇𝑇) = 2.5 �
𝑚𝑚𝑐𝑐

𝑚𝑚
�
3 4⁄

�
𝑚𝑚𝑣𝑣

𝑚𝑚
�
3 4⁄

�
𝑇𝑇

300 𝐾𝐾
�
3 2⁄

𝑒𝑒−𝐸𝐸𝑔𝑔 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ × 1019 𝑐𝑐𝑐𝑐−3 = 

For T=10 K we have 
𝑛𝑛𝑐𝑐 + 𝑝𝑝𝑣𝑣 = 2𝑛𝑛𝑖𝑖(𝑇𝑇 = 100 𝐾𝐾) = 1.35 × 10−21 𝑐𝑐𝑐𝑐−3. 

 ] 
5. By comparing the densities obtained at points 3 and 4 tell estimate if at T=100 K and 

for 𝑛𝑛𝑑𝑑 > 𝑛𝑛𝑐𝑐𝑐𝑐  the doped semiconductor is in the extrinsic (doping dominated) or 
intrinsic regime. 
[The semiconductor is in the extrinsic regime.] 

6. At T=0 and for a donor density 𝑛𝑛𝑑𝑑 > 𝑛𝑛𝑐𝑐𝑐𝑐, is the GaAs an insulator, a semiconductor or 
a metal? Why? 
[At T=0 the conduction band is still populated by the self screened  donors. Therefore 
the material is a metal.] 

 

 6.2  Current in a Landau Level            (10 pts) 

Let us consider 2D free electron in a magnetic field B. In the Landau Gauge the vector  
potential is 𝐀𝐀 = (0,𝐵𝐵𝐵𝐵). The Hamiltonian is 

𝐻𝐻 =
ℏ2

2𝑚𝑚
�−

𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ �−𝑖𝑖

𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑥𝑥
ℓ2
�
2

�, 

Where ℓ = �ℏ𝑐𝑐 𝑒𝑒𝑒𝑒⁄ .  Note that the component of the velocity operator are 𝑣𝑣𝑥𝑥 = − 𝑖𝑖ℏ
𝑚𝑚

𝜕𝜕
𝜕𝜕𝜕𝜕

 and 

𝑣𝑣𝑦𝑦 = ℏ
𝑚𝑚
�−𝑖𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑥𝑥

ℓ2
�. The levels for this Hamiltonian are discreet and the eigenfunctions at 

the lowest level can be chosen as 

𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜒𝜒(𝑥𝑥 + ℓ2𝑘𝑘),          𝜒𝜒(𝑥𝑥) = �
1
𝜋𝜋ℓ2

�
1 4⁄

𝑒𝑒−𝑥𝑥2 2⁄ ℓ2 , 
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where 𝑘𝑘 is a real number. The 𝜒𝜒(𝑥𝑥) is normalized over  (−∞,∞). 

1. Calculate the current on the generic state 𝑘𝑘, disregarding the normalization: 
 
𝑗𝑗𝑥𝑥(𝑥𝑥,𝑦𝑦) ∝ 𝜓𝜓𝑘𝑘∗(𝑥𝑥,𝑦𝑦)𝑣𝑣𝑥𝑥𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) + 𝑐𝑐. 𝑐𝑐.     and      𝑗𝑗𝑦𝑦(𝑥𝑥,𝑦𝑦) ∝ 𝜓𝜓𝑘𝑘∗(𝑥𝑥,𝑦𝑦)𝑣𝑣𝑦𝑦𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) + 𝑐𝑐. 𝑐𝑐. 
 
[For the x direction we have  

𝑗𝑗𝑥𝑥(𝑥𝑥,𝑦𝑦) ∝ 𝜓𝜓𝑘𝑘∗(𝑥𝑥,𝑦𝑦)𝑣𝑣𝑥𝑥𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) + 𝑐𝑐. 𝑐𝑐. = �−
𝑖𝑖ℏ
𝑚𝑚
�  𝜒𝜒2(𝑥𝑥 + ℓ2𝑘𝑘)

𝑥𝑥 + ℓ2𝑘𝑘
ℓ2

+ 𝑐𝑐. 𝑐𝑐. = 0 

As expected, the current along the x direction is vanishing. For the y direction we 
have 

𝑗𝑗𝑦𝑦(𝑥𝑥,𝑦𝑦) ∝
2ℏ
𝑚𝑚
𝜒𝜒2(𝑥𝑥 + ℓ2𝑘𝑘) �𝑘𝑘 +

𝑥𝑥
ℓ2
�. 

 The current along the y direction depends only on the x direction.] 
2. Impose now periodic boundary conditions along 𝑦𝑦: 𝜓𝜓𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦 + 𝐿𝐿). This 

allows only some values of k to be admissible. Which ones? Write the generic 
wavefunction normalized over the appropriate cell. 
[The admissible values are found by applying the definition of the periodic 
wavefunction:  

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑦𝑦+𝐿𝐿) ⇒ 𝑘𝑘𝑛𝑛 =
2𝜋𝜋𝜋𝜋
𝐿𝐿

 

The wavefunciton has to be normalized on the cell of length L: therefore 

𝜓𝜓𝑛𝑛(𝑥𝑥,𝑦𝑦) =
1
√𝐿𝐿

𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛𝑦𝑦𝜒𝜒(𝑥𝑥 + ℓ2𝑘𝑘𝑛𝑛). 

] 
3. Let us now consider non interacting electrons occupying all the allowed k´s. Obtain 

the density 

𝑛𝑛(𝑥𝑥,𝑦𝑦) = � |𝜓𝜓𝑘𝑘(𝑥𝑥, 𝑦𝑦)|2.
𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

How this density depends from the y direction? Is the density n periodic along x? with 
which period? 
[The density is given by 
 

𝑛𝑛(𝑥𝑥,𝑦𝑦) = � |𝜓𝜓𝑘𝑘(𝑥𝑥, 𝑦𝑦)|2
𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

=
1
𝐿𝐿
�𝜒𝜒2(𝑥𝑥 + ℓ2𝑘𝑘𝑛𝑛)
𝑛𝑛

=
1
𝐿𝐿
�

1
𝜋𝜋ℓ2

�
1 2⁄

�𝑒𝑒−�𝑥𝑥+2𝜋𝜋𝜋𝜋ℓ2 𝐿𝐿⁄ �2 ℓ2�

𝑛𝑛

 

We can see that the density does not depend on the y direction, consistent with the 
fact that the current along y depends only on the x variable. On the other side, the 
current is a sum of Gaussians, each translated by a fixed length. This induces a period 
of  2𝜋𝜋ℓ2 𝐿𝐿⁄ = ℎ𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒⁄ . ] 
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6.3  Degenerate semiconductor            (10 pts) 

Consider a semiconductor for which the non-degeneracy condition is not verified. In other 
words you cannot assume 𝜖𝜖𝑐𝑐 − 𝜇𝜇 ≫ 𝐾𝐾𝐵𝐵𝑇𝑇 and 𝜇𝜇 − 𝜖𝜖𝑣𝑣 ≫ 𝐾𝐾𝐵𝐵𝑇𝑇. However, for this 
semiconductor the following relation 

𝑔𝑔𝑣𝑣(𝜖𝜖) = 𝑔𝑔𝑐𝑐(−[𝜖𝜖 − 𝐸𝐸0] + 𝐸𝐸0) 

holds. Here 𝑔𝑔𝑣𝑣(𝜖𝜖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑐𝑐(𝜖𝜖) are the DOS of the valence and conduction bands and 
2𝐸𝐸0 = 𝜖𝜖𝑐𝑐 + 𝜖𝜖𝑣𝑣. Moreover it is possible to neglect the impurity (intrinsic regime). 

1. Assume that the top of the conduction band is at the energy 𝜖𝜖𝑐𝑐 + 2Δ. Draw a 
qualitative drawing of the density of states 𝑔𝑔𝑐𝑐(𝜖𝜖), paying attention to its behavior at 
the two band extrema. In particular specify the qualitative behavior of the DOS at 
those points. 

2. By making use of the above-written relation, draw on the same graph 𝑔𝑔𝑐𝑐(𝜖𝜖) and 
𝑔𝑔𝑣𝑣(𝜖𝜖). 

3. Write the condition that determines the chemical potential and, by rearranging in a 
simple way one of the integrals, determine the chemical potential 𝜇𝜇 at every 
temperature. [Note: no explicit integration is needed! Moreover, put the energy zero 
at the half of the gap, in such a way that 2𝐸𝐸0 = 𝜖𝜖𝑐𝑐 + 𝜖𝜖𝑣𝑣 = 0.] 
 
[The condition that determines the chemical potential for an intrinsic semiconductor 
is 𝑛𝑛 − 𝑝𝑝 = 0, I.e. the number of electrons is equal to the number of holes. The 
electron and hole density is given by [Ashcroft eq. 28.9]: 

𝑛𝑛 = � 𝑑𝑑𝑑𝑑 
𝑔𝑔𝑐𝑐(𝜖𝜖)

𝑒𝑒𝛽𝛽(𝜖𝜖−𝜇𝜇) + 1

+∞

𝜖𝜖𝑐𝑐

, 𝑝𝑝 = � 𝑑𝑑𝑑𝑑 
𝑔𝑔𝑣𝑣(𝜖𝜖)

𝑒𝑒𝛽𝛽(𝜇𝜇−𝜖𝜖) + 1

𝜖𝜖𝑣𝑣

−∞

 

By putting the zero of the energy at the half of the gap we have 𝜖𝜖𝑐𝑐 = −𝜖𝜖𝑣𝑣 = 𝐸𝐸0 2⁄ ; 
moreover with this choice we have 

 𝑔𝑔𝑣𝑣(𝜖𝜖) = 𝑔𝑔𝑐𝑐(−𝜖𝜖) 
 Therefore 

𝑛𝑛 − 𝑝𝑝 = � 𝑑𝑑𝑑𝑑 
𝑔𝑔𝑐𝑐(𝜖𝜖)

𝑒𝑒𝛽𝛽(𝜖𝜖−𝜇𝜇) + 1

+∞

𝐸𝐸0 2⁄

− � 𝑑𝑑𝑑𝑑 
𝑔𝑔𝑐𝑐(−𝜖𝜖)

𝑒𝑒𝛽𝛽(𝜇𝜇−𝜖𝜖) + 1

−𝐸𝐸0 2⁄

−∞

= 0. 

we can change the variable in the second integral 𝜖𝜖 → −𝜖𝜖; in this case the integration 
limits become the same and we get: 
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𝑛𝑛 − 𝑝𝑝 = � 𝑑𝑑𝑑𝑑 𝑔𝑔𝑐𝑐(𝜖𝜖) �
1

𝑒𝑒𝛽𝛽(𝜖𝜖−𝜇𝜇) + 1
−

1
𝑒𝑒𝛽𝛽(𝜇𝜇+𝜖𝜖) + 1

�
+∞

𝐸𝐸0 2⁄

= sinh𝛽𝛽𝛽𝛽 � 𝑑𝑑𝑑𝑑 𝑔𝑔𝑐𝑐(𝜖𝜖)
1

cosh𝛽𝛽𝛽𝛽 + cosh𝛽𝛽𝛽𝛽

+∞

𝐸𝐸0 2⁄

= 0. 

The integrand is definite positive over the integration limit, therefore it cannot 
vanish. The only way that the equation is satisfied is sinh𝛽𝛽𝛽𝛽 = 0, i.e. 𝜇𝜇 = 0 for any T. 
This means the chemical potential remains at the middle of the gap. This is also logic 
since the conduction and valence band DOS are the one the mirror image of the 
other . 
] 

4. Consider now a density of states of the form 𝑔𝑔𝑐𝑐(𝜖𝜖) = 𝐴𝐴�(𝜖𝜖 − 𝜖𝜖𝑐𝑐)(2Δ − 𝜖𝜖 + 𝜖𝜖𝑐𝑐). 
Determine the constant A in terms of the density of lattice sites 𝑛𝑛𝐿𝐿 and Δ. 
[The normalization condition on the density of states is [Ashcroft 8.58].  

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐(𝜖𝜖) = 2𝑛𝑛𝐿𝐿

+∞

−∞

 

Therefore, by taking into account the bandwidth, we have  

𝐴𝐴 � 𝑑𝑑𝑑𝑑�(𝜖𝜖 − 𝜖𝜖𝑐𝑐)(2Δ − 𝜖𝜖 + 𝜖𝜖𝑐𝑐)

𝜖𝜖𝑐𝑐+2Δ

𝜖𝜖𝑐𝑐

= 2𝑛𝑛𝐿𝐿 

By performing the change of variable 𝑢𝑢 = 𝜖𝜖 − Δ − 𝜖𝜖𝑐𝑐  to put the zero at the band 
centre. We therefore get the symmetric integral 

𝐴𝐴 �𝑑𝑑𝑑𝑑�Δ2 − 𝑢𝑢2
Δ

−Δ

= Δ𝐴𝐴 �𝑑𝑑𝑑𝑑�1 −
𝑢𝑢2

Δ2

Δ

−Δ

= Δ2𝐴𝐴 �𝑑𝑑𝑑𝑑�1 − 𝑡𝑡2
1

−1

= Δ2𝐴𝐴 arcsin 1 =
πΔ2𝐴𝐴

2
= 2𝑛𝑛𝐿𝐿 . 

By making use of the note. Therefore we have 𝐴𝐴 = 4𝑛𝑛𝐿𝐿 πΔ2⁄ . Of course the 
normalization does not depend on the conduction band position but only on the 
bandwidth.] 

5. Express the effective mass at the bottom of the conduction band in terms of 𝑛𝑛𝐿𝐿 and 
Δ. Knowing that 𝑛𝑛𝐿𝐿 = 5.00 × 1022 𝑐𝑐𝑐𝑐−3 and that Δ = 27.7 eV evaluate the ratio 
𝑚𝑚𝑐𝑐 𝑚𝑚𝑒𝑒⁄ . 
[Around the conduction band bottom (𝜖𝜖 ≃ 𝜖𝜖𝑐𝑐) we have 

𝑔𝑔𝑐𝑐(𝜖𝜖) ≃
25 2⁄ 𝑛𝑛𝐿𝐿
πΔ3 2⁄ �𝜖𝜖 − 𝜖𝜖𝑐𝑐 

By comparing this result to the DOS of a free electron dispersion [Ashcroft eq. 2.61]  

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓(𝜖𝜖) ≃
√2𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

3 2⁄

π2ℏ3 �𝜖𝜖 − 𝜖𝜖𝑐𝑐  we get the effective mass in terms of the density and 

bandwidth: 
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𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 =
ℏ2

∆
(4𝜋𝜋𝑛𝑛𝐿𝐿)2 3⁄  

 
In terms of Hartree atomic units (𝑒𝑒 = ℏ = 𝑚𝑚𝑒𝑒 = 1) we have ∆= 1.02 Hartree, 
𝑛𝑛𝐿𝐿 = 7.44 × 10−3 𝑎𝑎0−3. Therefore we obtain a value of 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 0.202 𝑚𝑚𝑒𝑒.] 

Note: ∫𝑑𝑑𝑑𝑑√1 − 𝑥𝑥2 = �𝑥𝑥√1 − 𝑥𝑥2 + arcsin 𝑥𝑥� 2⁄ . 
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