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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. The use of 
clear and compact notation is greatly encouraged, as well as the systematic use of dimensional 
checks of the expressions and results. When you are asked to “evaluate” something this means to 
provide a numerical evaluation of the expression. In this case, at times, it might be necessary to 
indicate a parameter whose explicit numerical value is not provided, i.e. 𝜔𝜔𝑐𝑐 = 1.76 𝐻𝐻 (Gauss) Hertz. 
Otherwise specified, all the evaluations are to be given with 3 significant figures. 

2.1  Specific heat of an element           (6 pts) 

In figure 1 the specific heat of an unknown element is shown. 

1. Explain why this data can be described satisfactorily by the Debye approximation. 
 

2. Using the Debye model and knowing that at high temperature the specific heat is 
234.4 J Kg−1K−1 identify the element. 
 

3. Using the plots evaluate the Debye temperature, the sound velocity, its number density 
(number of atoms per unit volume) and, from the result of point 1, its mass density. 
 

 

Figure 1: Specific heat of  an uncknown element in linear (left) and logaritmic (right) scale. 
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2.2      Stability of D-dimensional crystal at T>0          (20 pts) 

Consider a harmonic crystal with a single atom per cell in D dimensions. (of course we are interested 
in the cases D=1,2,3). 

1. Show that the low-frequency phononic density of states behaves like 𝑔𝑔(𝜔𝜔) = 𝐴𝐴𝜔𝜔𝐷𝐷−1. 

Assume 𝜔𝜔𝑠𝑠(𝐤𝐤) = 𝑐𝑐𝑠𝑠��̂�𝐤�𝑘𝑘 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐. You should get 𝐴𝐴 = 𝑐𝑐−𝐷𝐷𝐷𝐷Ω𝐷𝐷 (2𝜋𝜋)𝐷𝐷⁄  with Ω𝐷𝐷 = 2𝜋𝜋𝐷𝐷/2

Γ(𝐷𝐷/2)
. 

the D-dimensional solid angle and c an appropriate angle- and polarization- average of 𝑐𝑐𝑠𝑠�𝒌𝒌��. 
Give an expression for c. 
 

2. Let us consider now the mean square displacement from the atomic equilibrium position 

𝐮𝐮2��� =
1
𝑁𝑁
�〈𝐮𝐮2(𝐑𝐑)〉,
R

 

with 〈… 〉 the thermal average at a fixed temperature. Express 𝐮𝐮2��� as a sum over the normal 
modes frequency. 
[Hint: (i) express the coordinates as a sum of the normal modes  
𝐮𝐮(𝐑𝐑) = �1 √𝑁𝑁⁄ �∑ 𝐮𝐮𝑠𝑠(𝐤𝐤)𝑒𝑒𝑖𝑖𝐤𝐤∙𝐑𝐑𝐤𝐤,𝑠𝑠 , with 𝐮𝐮𝑠𝑠(𝐤𝐤) the normal coordinates and 𝐤𝐤 belonging to the 
FBZ; (ii)  𝐮𝐮𝑠𝑠(𝐤𝐤) ∝ 𝛜𝛜𝑠𝑠(𝐤𝐤), and 𝛜𝛜𝑠𝑠(𝐤𝐤) ∝ 𝛜𝛜𝑠𝑠(−𝐤𝐤); (iii) Because of the virial theorem, at a given 
temperature the average value of the potential energy of a normal mode is half the value of 
the average of the total energy ℏ𝜔𝜔𝑠𝑠(𝐤𝐤)(𝑛𝑛𝑠𝑠(𝐤𝐤) + 1 2⁄ ). Remember that  

1
𝑁𝑁
�𝑒𝑒𝑖𝑖(𝐤𝐤+𝐤𝐤´)∙𝐑𝐑

R

= δ𝐤𝐤𝐤𝐤´. 

 
3. Express now 𝐮𝐮2��� as a frequency integral, introducing the density of states. Show that 

𝐮𝐮2��� = ℏ
2𝑀𝑀 ∫ 𝑑𝑑𝜔𝜔 𝑔𝑔(𝜔𝜔)

𝜔𝜔
[𝑛𝑛(𝜔𝜔) + 1 2⁄ ]𝜔𝜔𝑐𝑐

0 . 

 
4. Specialize the formula found in the preceding point to a finite system, simply by introducing a 

lower cutoff frequency limiting the frequency integral to 𝜔𝜔 > 𝜔𝜔𝑡𝑡 = 2𝜋𝜋𝑐𝑐 𝐿𝐿⁄ . Here 𝐿𝐿 =
𝑁𝑁1 𝐷𝐷⁄ 𝜌𝜌1 𝐷𝐷⁄⁄ , with 𝜌𝜌 the atomic density.  
 

5. Evaluate now for 𝑇𝑇 > 0 the dominant contribution to 𝐮𝐮2��� due to the low frequency modes 
(𝜔𝜔𝑡𝑡 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐), in the regime for which 𝛽𝛽ℏ𝜔𝜔 ≪ 1. 
 

6. What happens to 𝐮𝐮2��� for 𝐷𝐷 = 2 when 𝑁𝑁 → ∞? What does that mean for the stability of the 
system? 
 

7. Same question as in point 6 but with 𝐷𝐷 = 1. 

 

 

 

2 
 



2.3  1D rare gas chain              (10 pts) 

Consider a 1D chain of Xenon atoms. Assume a pair interaction defined by the Lennard-Jones 
potential 𝜙𝜙(|𝑥𝑥|) = 4𝜖𝜖[(𝜎𝜎 𝑥𝑥⁄ )12 − (𝜎𝜎 𝑥𝑥⁄ )6]. Assume atoms are evenly spaced at equilibrium (spacing 
𝑥𝑥𝑛𝑛0 = 𝑛𝑛𝑛𝑛) and that they can oscillate around equilibrium position (𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛0 + 𝑢𝑢𝑛𝑛, with   𝑢𝑢𝑛𝑛 ≪ 𝑛𝑛). You 
can find the value of Lennard-Johnes parameters for Xenon in the Ashcroft-Mermin. 

1. Calculate the energy per particle 𝑒𝑒(𝑛𝑛) for a given equilibrium spacing, as a function of 𝜖𝜖 and 
𝜎𝜎. [Hint: approximating each of the sums 𝜁𝜁(𝑝𝑝) = ∑ 𝑛𝑛−𝑝𝑝∞

𝑛𝑛=1 ,𝑝𝑝 = 6,12 with the first 3 terms 
of the series we obtain 𝜁𝜁(6) = 1.02 and 𝜁𝜁(12) = 1.00]. 
 

2. Calculate the equilibrium spacing as a function of 𝜎𝜎 and in Angrstrom. 
 

3. Consider now a nearest-neighbor approximation. Calculate the sound velocity for the 
acoustic phonons. 
 

4. Evaluate the zone boundary frequency in Hertz. 
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