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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. The use of 
clear and compact notation is greatly encouraged, as well as the systematic use of dimensional 
checks of the expressions and results. When you are asked to “evaluate” something this means to 
provide a numerical evaluation of the expression. In this case, at times, it might be necessary to 
indicate a parameter whose explicit numerical value is not provided, i.e. 𝜔𝜔𝑐𝑐 = 1.76 𝐻𝐻 (Gauss) Hertz. 
Otherwise specified, all the evaluations are to be given with 3 significant figures. 

2.1  Specific heat of an element           (6 pts) 

In figure 1 the specific heat of a unknown element is shown. 

1. Explain why this data can be described satisfactorily by the Debye approximation. 
 
[The specific heat reaches a plateau at high temperature, while at low temperature it 
behaves like T3. This can be  readily verified in the logarithmic plot, by extending with a ruler 
the power law (i.e. straight line in the logplot) behavior at low T and noticing that, as the 
temperature spans a decade (10-100 K) the specific heat spans three (1-1000 J Kg−1K−1).] 

 
2. Using the Debye model and knowing that at high temperature the specific heat is 

234.4 J Kg−1K−1 identify the element. 
 
[Let us consider 1 Kg of substance. Therefore the heat capacity is C=234.4 J K−1. According to 
the high temperature limit (Dulong-Petit Law) this is equal to 3NR, where N is the number of 
moles in 1 Kg of substance and R=8.3145 J K−1 mol−1. Therefore we obtain 

𝑁𝑁 = 𝐶𝐶
3𝑅𝑅

= 9.397 mol. This corresponds to a molar weight of  

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 1000
9.937

= 100,63 g mol−1. With a quick check on a periodic table we find that the 

nearest molar weight is that of silver.  ] 
 

3. Using the plots evaluate the Debye temperature, the sound velocity, its number density 
(number of atoms per unit volume) and, from the result of point 1, its mass density. 
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[At low temperatures the behavior of the heat capacity of 1 Kg (N=9.397 mol) of silver is 
(from eq. 23.27 Ashcroft) 

𝐶𝐶 = 234𝑁𝑁𝑁𝑁 � 𝑇𝑇
𝑇𝑇𝐷𝐷
�
3

.From the log plot we see that for T=11 K we have C=2 J K-1. Inserting these 

data into the preceeding relation we find TD=210 K. an estimation correct to within 2 percent 
with the accepted value of 215 K for silver. 
From the definition of Debye temperature 𝑇𝑇𝐷𝐷 = ℏ𝑐𝑐√6𝜋𝜋2𝑛𝑛3 /𝑘𝑘𝐵𝐵  we obtain the number 
density and consequently the molar volume and, the mass density of silver (since we know 
the molar mass from point 1. ] 

 

Figure 1: Specific heat of  an uncknown element in linear (left) and logaritmic (right) scale. 

 

 

2.2      Stability of D-dimensional crystal at T>0          (20 pts) 

Consider a harmonic crystal with a single atom per cell in D dimensions. (of course we are interested 
in the cases D=1,2,3). 

1. Show that the low-frequency phononic density of states behaves like 𝑔𝑔(𝜔𝜔) = 𝐴𝐴𝜔𝜔𝐷𝐷−1. 
Assume 𝜔𝜔𝑠𝑠(𝐤𝐤) = 𝑐𝑐𝑠𝑠��̂�𝐤�𝑘𝑘 for 𝜔𝜔 < 𝜔𝜔𝑐𝑐. You should get 𝐴𝐴 = 𝑐𝑐−𝐷𝐷𝐷𝐷Ω𝐷𝐷 (2𝜋𝜋)𝐷𝐷⁄  with Ω𝐷𝐷 the D-
dimensional solid angle and c an appropriate angle- and polarization- average of 𝑐𝑐𝑠𝑠�𝒌𝒌��. Give 
an expression for c. 
 

[The definition of DOS (Eq. 23.34 Ashcroft) is 𝑔𝑔(𝜔𝜔) = ∑ ∫ 𝑑𝑑𝐷𝐷𝑘𝑘
(2𝜋𝜋)𝐷𝐷𝑠𝑠 𝛿𝛿�𝜔𝜔 − 𝜔𝜔𝑠𝑠(𝐤𝐤)�. The phonon 

dispersion is 𝜔𝜔𝑠𝑠(𝐤𝐤) = 𝑐𝑐𝑠𝑠�𝒌𝒌��𝑘𝑘. Here s=1,...,D. By using putting it into the integral and separating the 
polar coordinates we obtain 

𝑔𝑔(𝜔𝜔) =
1

(2𝜋𝜋)𝐷𝐷��𝑑𝑑Ω𝐷𝐷 �𝑑𝑑𝑘𝑘𝑘𝑘𝐷𝐷−1𝛿𝛿�𝜔𝜔 − 𝑐𝑐𝑠𝑠�𝒌𝒌��𝑘𝑘�
𝑠𝑠

. 

Now we can perform a change of variables 𝑢𝑢 = 𝑐𝑐𝑠𝑠�𝒌𝒌��𝑘𝑘 to solve the innermost integral, obtaining 
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𝑔𝑔(𝜔𝜔) =
1

(2𝜋𝜋)𝐷𝐷��𝑑𝑑Ω𝐷𝐷
1

�𝑐𝑐𝑠𝑠�𝒌𝒌���
𝐷𝐷 �𝑑𝑑𝑢𝑢𝑢𝑢𝐷𝐷−1𝛿𝛿(𝜔𝜔 − 𝑢𝑢)

𝑠𝑠

=
𝜔𝜔𝐷𝐷−1

(2𝜋𝜋)𝐷𝐷��𝑑𝑑Ω𝐷𝐷
1

�𝑐𝑐𝑠𝑠�𝒌𝒌���
𝐷𝐷

𝑠𝑠

 

By multiplying and dividing by 𝐷𝐷Ω𝐷𝐷 we obtain finally 𝑔𝑔(𝜔𝜔) = 𝐴𝐴𝜔𝜔𝐷𝐷−1, where 𝐴𝐴 = 𝑐𝑐−𝐷𝐷𝐷𝐷Ω𝐷𝐷 (2𝜋𝜋)𝐷𝐷⁄ , 

and 𝑐𝑐−𝐷𝐷 = 1
𝑆𝑆Ω𝐷𝐷

∑ ∫𝑑𝑑Ω𝐷𝐷
1

�𝑐𝑐𝑠𝑠�𝒌𝒌���
𝐷𝐷𝑠𝑠 . 

NB. A compact expression for the D- dimensional solid angle is Ω𝐷𝐷 = 2𝜋𝜋𝐷𝐷/2

Γ(𝐷𝐷/2)
.] 

 
2. Let us consider now the mean square displacement from the atomic equilibrium position 

𝐮𝐮2��� =
1
𝑁𝑁
�〈𝐮𝐮2(𝐑𝐑)〉,
R

 

with 〈… 〉 the thermal average at a fixed temperature. Express 𝐮𝐮2��� as a sum over the normal 
modes frequency. 
[Hint: (i) express the coordinates as a sum of the normal modes  
𝐮𝐮(𝐑𝐑) = �1 √𝑁𝑁⁄ �∑ 𝐮𝐮𝑠𝑠(𝐤𝐤)𝑒𝑒𝑖𝑖𝐤𝐤∙𝐑𝐑𝐤𝐤,𝑠𝑠 , with 𝐮𝐮𝑠𝑠(𝐤𝐤) the normal coordinates and 𝐤𝐤 belonging to the 
FBZ; (ii)  𝐮𝐮𝑠𝑠(𝐤𝐤) ∝ 𝛜𝛜𝑠𝑠(𝐤𝐤), and 𝛜𝛜𝑠𝑠(𝐤𝐤) ∝ 𝛜𝛜𝑠𝑠(−𝐤𝐤); (iii) Because of the virial theorem, at a given 
temperature the average value of the potential energy of a normal mode is half the value of 
the average of the total energy ℏ𝜔𝜔𝑠𝑠(𝐤𝐤)(𝑛𝑛𝑠𝑠(𝐤𝐤) + 1 2⁄ ). ] 
 

[Introducing the normal modes we have  

𝐮𝐮2��� =
1
𝑁𝑁2� � 〈𝐮𝐮𝑠𝑠(𝐤𝐤) ∙ 𝐮𝐮𝑠𝑠´(𝐤𝐤´)〉𝑒𝑒𝑖𝑖(𝐤𝐤+𝐤𝐤´)∙𝐑𝐑

𝐤𝐤𝐤𝐤´𝑆𝑆𝑆𝑆´R

 

Now we remember that  

1
𝑁𝑁
�𝑒𝑒𝑖𝑖(𝐤𝐤+𝐤𝐤´)∙𝐑𝐑

R

= δ(𝐤𝐤 + 𝐤𝐤´) 

And that since 𝐮𝐮𝑠𝑠(𝐤𝐤) ∝ 𝛜𝛜𝑠𝑠(𝐤𝐤) the polarizations are mutually orthogonal we obtain 

𝐮𝐮2��� =
1
𝑁𝑁
�〈𝐮𝐮𝑆𝑆2(𝐤𝐤)〉
𝐤𝐤𝑆𝑆

=
ℏ

2𝑁𝑁𝑀𝑀
�(𝑛𝑛𝑠𝑠(𝐤𝐤) + 1 2⁄ )
𝐤𝐤𝑆𝑆

/𝜔𝜔𝑠𝑠(𝐤𝐤) 

The last passage has been perfomerd using the virial theorem (hint iii) 〈𝐮𝐮𝑆𝑆2(𝐤𝐤)〉 =  ℏ
2𝑀𝑀𝜔𝜔𝑠𝑠(𝐤𝐤)

(𝑛𝑛𝑠𝑠(𝐤𝐤) +

1 2⁄ ) ] 

3. Express now 𝐮𝐮2��� as a frequency integral, introducing the density of states. 

[ 

𝐮𝐮2��� =
ℏ

2𝑁𝑁𝑀𝑀
�(𝑛𝑛𝑠𝑠(𝐤𝐤) + 1 2⁄ )
𝐤𝐤𝑆𝑆

/𝜔𝜔𝑠𝑠(𝐤𝐤) =
ℏ

2𝑀𝑀
� 𝑑𝑑𝜔𝜔[𝑛𝑛(𝜔𝜔) + 1 2⁄ ]

𝜔𝜔𝑐𝑐

0

𝑔𝑔(𝜔𝜔)/𝜔𝜔 

] 
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4. Specialize the formula found in the preceding point to a finite system, simply by introducing a 
lower cutoff frequency limiting the frequency integral to 𝜔𝜔 > 𝜔𝜔𝑡𝑡 = 2𝜋𝜋𝑐𝑐 𝐿𝐿⁄ . Here 𝐿𝐿 =
𝑁𝑁1 𝐷𝐷⁄ 𝜌𝜌1 𝐷𝐷⁄⁄ , with 𝜌𝜌 the atomic density.  

5. Evaluate now for 𝑇𝑇 > 0 the dominant contribution to 𝐮𝐮2��� due to the low frequency modes 
(𝜔𝜔𝑡𝑡 < 𝜔𝜔 < 𝜔𝜔𝑐𝑐), in the regime for which 𝛽𝛽ℏ𝜔𝜔 ≪ 1. 
 
[ The thermal average of the phonon occupation number is the Bose distribution. Therefore: 

𝐮𝐮2��� =
ℏ

2𝑀𝑀
� 𝑑𝑑𝜔𝜔 �1 2⁄ +

1
𝑒𝑒𝛽𝛽ℏ𝜔𝜔 − 1

�

𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡

𝑔𝑔(𝜔𝜔)/𝜔𝜔 ≈
𝐴𝐴ℏ
2𝑀𝑀

� 𝑑𝑑𝜔𝜔 �1 2 +⁄
1

𝛽𝛽ℏ𝜔𝜔�

𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡

𝜔𝜔𝐷𝐷−2

=
𝐴𝐴ℏ
2𝑀𝑀 �

1
2
� 𝑑𝑑𝜔𝜔

𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡

𝜔𝜔𝐷𝐷−2 +
1
𝛽𝛽ℏ

� 𝑑𝑑𝜔𝜔

𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡

𝜔𝜔𝐷𝐷−3� 

 
 

6. What happens to 𝐮𝐮2��� for 𝐷𝐷 = 2 when 𝑁𝑁 → ∞? What does that mean for the stability of the 
system? 

[ For D=2 the first integrand is the unit, while the second is 𝜔𝜔−1 . Therefore the result is: 

𝐮𝐮2��� = 𝐴𝐴ℏ
2𝑀𝑀
�𝜔𝜔𝑐𝑐−𝜔𝜔𝑡𝑡

2
+ 1

𝛽𝛽ℏ
log𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡
�. 

This means that the system is thermodynamically stable at zero temperature ONLY, where the 
thermal fluctuations, with their logarithmic divergence, vanish. 

 
7. Same question as in point 6 but with 𝐷𝐷 = 1. 

[For D=1 the first integral has a logarithmic singularity, while the second integral is divergent as 
𝜔𝜔−1 : 

𝐮𝐮2��� = 𝐴𝐴ℏ
2𝑀𝑀
�log𝜔𝜔𝑐𝑐

𝜔𝜔𝑡𝑡
+ 1

𝛽𝛽ℏ
� 1
𝜔𝜔𝑡𝑡
− 1

𝜔𝜔𝑐𝑐
��, 

This means that the fluctuations diverge at the thermodynamic limit even at zero temperature 
(quantum fluctuations).  This means that a one dimensional system with one atom per cell is NOT 
thermodynamically stable, even at zero temperature. 

 

2.3  1D rare gas chain              (10 pts) 

Consider a 1D chain of Xenon atoms. Assume a pair interaction defined by the Lennard-Jones 
potential 𝜙𝜙(|𝑥𝑥|) = 4𝜖𝜖[(𝜎𝜎 𝑥𝑥⁄ )12 − (𝜎𝜎 𝑥𝑥⁄ )6]. Assume atoms are evenly spaced at equilibrium (spacing 
𝑥𝑥𝑛𝑛0 = 𝑛𝑛𝑛𝑛) and that they can oscillate around equilibrium position (𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛0 + 𝑢𝑢𝑛𝑛, with   𝑢𝑢𝑛𝑛 ≪ 𝑛𝑛). You 
can find the value of Lennard-Johnes parameters for Xenon in the Ashcroft-Mermin. 
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1. Calculate the energy per particle 𝑒𝑒(𝑛𝑛) for a given equilibrium spacing, as a function of 𝜖𝜖 and 
𝜎𝜎. [Hint: approximating each of the sums 𝜁𝜁(𝑝𝑝) = ∑ 𝑛𝑛−𝑝𝑝∞

𝑛𝑛=1 ,𝑝𝑝 = 6,12 with the first 3 terms 
of the series we obtain 𝜁𝜁(6) = 1.02 and 𝜁𝜁(12) = 1.00]. 

[the energy per particle is found by summing the interaction potential between the particles and all 
its n-th neighbors in the chain: 

𝑢𝑢(𝑛𝑛) = �4𝜖𝜖[(𝜎𝜎 𝑛𝑛𝑛𝑛⁄ )12 − (𝜎𝜎 𝑛𝑛𝑛𝑛⁄ )6] = 4𝜖𝜖
𝑛𝑛

[(𝜎𝜎 𝑛𝑛⁄ )12 − 1.02(𝜎𝜎 𝑛𝑛⁄ )6] 

] 

2. Calculate the equilibrium spacing as a function of 𝜎𝜎 and in Angrstrom. 

[the condition for equilibrium is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, therefore 

6.12− 12(𝜎𝜎 𝑛𝑛⁄ )6 = 0  i.e.   𝑛𝑛 = 𝜎𝜎(12/6.12)1/6 ≈ 1,12𝜎𝜎 = 4.46 Å. 

We used here the value 𝜎𝜎 = 3.98 Å (Ashcroft Table 20.1).] 

3. Consider now a nearest-neighbor approximation. Calculate the sound velocity for the 
acoustic phonons. 

[The acoustic phonon dispersion relation is 𝜔𝜔(𝑘𝑘) = �4𝐾𝐾
𝑀𝑀
�sin 𝑘𝑘𝑑𝑑

2
�, where M is the atomic mass and K is 

the second derivative of the interaction potential. In this case 

𝐾𝐾 = 𝜙𝜙´´(𝑛𝑛) =
24𝜖𝜖
𝜎𝜎2 �

26 �
𝜎𝜎
𝑛𝑛
�
14
− 7 �

𝜎𝜎
𝑛𝑛
�
8
�. 

To simplify things we use Hartree units here: 𝑒𝑒 = ℏ = 𝑚𝑚𝑒𝑒 = 1, measuring distances in units of the 
Bohr radius (0.53 Angstrom) and Energies (and frequencies) in Hartree (27.1 eV). We will convert 
results at the end. In these units 𝜖𝜖 = 0.014 𝑒𝑒𝑒𝑒 = 5.17 × 10−4 Hartree, and 𝜎𝜎 = 3.65 Å = 6.89 
Bohrs. Therefore we have  

𝐾𝐾 = 𝜙𝜙´´(𝑛𝑛) = 2.61 × 109.72 × 10−4 = 2.86 × 10−2 Hartree Bohr-2. Now the mass of a Xe atom is 
𝑀𝑀 = 2.39 × 10+5 𝑚𝑚𝑒𝑒. The sound velocity for low k is  

𝑐𝑐 = 𝑛𝑛�
𝐾𝐾
𝑀𝑀

= ⋯ = 2.90 × 10−3 = 6,35 × 103 𝑚𝑚 𝑠𝑠−1 

In Hartree units the speed is a dimensionless number and the speed of light as the value 137. 
Therefore we can covert the sound velocity in SI units.] 

4. Evaluate the zone boundary frequency in Hertz. 

[The zone boundary frequency is of course 𝜔𝜔𝑚𝑚𝑑𝑑𝑚𝑚 = 2�𝐾𝐾
𝑀𝑀

= 6,91 × 10−4 Hartree = 18,7 meV = 4.52 

THz.] 
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