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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 

The use of clear and compact notation is greatly encouraged, as well as the systematic use of 

dimensional checks of the expressions and results. When you are asked to “evaluate” 

something this means to provide a numerical evaluation of the expression. In this case, at 

times, it might be necessary to indicate a parameter whose explicit numerical value is not 

provided, i.e. 𝜔𝑐 = 1.76 𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 

given with 3 significant figures. 

2.1  Lattice thermal conductivity 

 In intrinsic silicon, the thermal conductivity is mainly due to the lattice contribution, and the 

acoustic phonons in particular. In figure 1, the measured thermal conductivity of a Silicon 

sample is shown, along with the specific heat.  

 

Figure 1: Thermal conductivity and specific heat of of Silicon. 

The data show four different behaviors: i) a low temperature region below 5 K where k 

increases rapidly with temperature; ii) a plateau region centered around between 10 K and 
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40 K; iii) a crossover region between 100 K and 400 K where the conductivity starts 

decreasing; and iv) a high temperature region above 400 K. 

1. From the data it is clear that the low temperature conductivity in region i) follows a 

power law behavior. Estimate the value of the exponent of this power law and 

comment the result in the light of the model for the thermal conductivity  

 

𝑘 =
1

3
𝐶𝑣𝑙 

 

shown during the lectures. (Here C is the specific heat, v is the sound velocity and l is 

the mean free path). 

 

[The bi-logarithmic plot clearly shows that the thermal condcuctivity follows a T3 

behavior at low temperature. This means that its behavior is dominated by the 

specific heat, and the mean free path is constant in this temperature range. ] 

 

2. By using the low temperature thermal conducitivity data, give an estimate of the low 

temperature mean free path of phonons in silicon. (assume the low-T mean free path 

is temperature-independent and obtain the specific heat and phonon velocity data 

for Silicon from literature or other online references). Comment the result. 

 

[From literature we get that the (angle averaged) velocity of longitudinal sound 

waves in silicon is 8.97 × 103 𝑚 𝑠−1 . From the plot we get that  𝑘(𝑇 = 10 𝐾) =  2 ×

10−2 𝑊 𝑐𝑚 𝐾−1 and from literature we get 𝐶𝑝(𝑇 = 10 𝐾) =  3 × 10−4 𝐽 𝑔−1 𝐾−1 

and the density is 𝜌 =  2.33 𝑔 𝑐𝑚−3 therefore:  

 

𝑙(𝑇 = 10 𝐾) = 3
 𝑘(𝑇=10 𝐾)

𝜌𝐶𝑝(𝑇=10 𝐾)𝑣
= 1 𝜇𝑚.] 

 

3. The conductivity shows a plateau around 40 K, i.e. in a region where the specific heat 

is still growning rapidly with temperature. Give a qualitative reason of such a 

different behavior. 

 

[This means the mean free path starts to be suppressed by inelastic scattering 

mechanisms.] 

 

4. The decrease in the thermal conductivtiy in the region iv) shows also a power law 

behavior. Give an rough estimate of the exponent of the power law. What is the main 

scattering mechanism responsible for this decrease? Comment in the light of the 

known properties of silicon (i.e. Debye temperature) 
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[The power law is between 1 and 2. This means umklapp scattering is the main high 

temperature limit to mean free path. This is consistent since T is above silicon Debye 

temperature of 640 K.] 

 

2.2  Free electrons in Sodium            (10 pts) 

Sodium (Na) in normal conditions of temperature and pressure is a metal with BCC structure, 

with a density of 0.97 g cm-3, mass number of about 23 and Fermi energy EF of about 3 eV. 

1. Calculate the Fermi temperature TF, Fermi velocity and average kinetic energy of the 

electrons at 0 K. 

 

[Since the Fermi Energy is 𝐸𝐹 = 3 𝑒𝑉 this corresponds to a Fermi temperature of 

𝑇𝐹 =  𝐸𝐹 𝑘𝐵⁄ = 3.6 × 104 𝐾; by extracting the rs parameter and the number density 

(Ashcroft eq. 2,.26) we calculate the Fermi velocity to be (Ashcroft eq. 2,24) 

𝑣𝐹 = 1.1 × 108 cm s-1. The average kinetic energy (per electron - Ashcroft eq. 2.31) is 

simply 𝐸 = 3/5𝐸𝐹 = 1.8 eV.] 

 

2. Calculate the average kinetic energy at room temperature. What is the difference 

with its value at 0 K? 

 

[The average kinetic energy is the energy density divided by the number density. 

Therefore, from the energy density as a function of temperature (for 𝑇 ≪ 𝑇𝐹) 

(Ashcroft eq. 2.79) we get:  

 

𝐸(𝑇) = 3𝐸𝐹 5⁄ + 𝑔(𝐸𝐹)(𝑘𝐵𝑇)2 𝜋2 6𝑛⁄  

 

By inserting the value of the DOS at Fermi (Eq. 2.65) we finally get: 

 

𝐸(𝑇) = 3𝐸𝐹 5⁄ + (𝑘𝐵𝑇)2 𝜋2 4⁄ 𝐸𝐹 . 

 

Since 𝐸𝐹 = 3 eV and 𝑘𝐵𝑇 = 0.025 eV at 300 K we get  

 

𝐸(𝑇 = 300𝐾) = 1.8 + 2 × 10−4 eV 

 

the relative correction for the average energy is negligible because the Fermi 

temperature is high. 

 

3. If you would consider the electron gas as a classical gas. What would be the average 

kinetic energy at 0 K? And at room temperature? 
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[The average kinetic energy of a classical electron gas is 3𝑘𝐵𝑇 2⁄ . Therefore at 0 K for 

a classical gas is of course zero and at 300 K it would be  37.5 meV.] 

  

4. From the given Fermi energy, calculate the density n of free electrons present in the 

metal. 

 

[As mentioned in point 1, the rs parameter from the Fermi energy (Ashcroft eq. 2.26) 

is about 4; therefore the number density obtained is nel=2.6 × 1022 cm-3.] 

 

5. Calculate the number density of Na atoms and then the average number of free 

electrons per atom. Is it what you expect? Comment. 

 

[From the mass density given and the mass number we get an atomic number 

density of approximately nat= 7.8 × 1022 cm-3, this would mean that there is one 

third of electron per atom! This is an unphysical result, therefore the density given 

for sodium MUST be wrong. Is in fact the density of aluminium.] 

2.3  Electronic Density of States           (10 pts) 

1. Derive the expression of the Density of electronic states for a two dimensional 

electron gas. 

 

[From the density of states definition in two dimensions (2 is the spin degeneracy) 

𝑔2(𝜖) =
2

4𝜋2
∫ d𝐤 δ(𝜖 − ℏ2𝑘2 2𝑚⁄ ) = 

=
4𝜋

4𝜋2 ∫ d𝑘 𝑘 δ(𝜖 − ℏ2𝑘2 2𝑚⁄ ) =
𝑚

𝜋ℏ2 ∫ d𝑢 δ(𝜖 − 𝑢) =
𝑚

𝜋ℏ2.] 

  

2. Considering the electron density n as a parameter, study the behavior of the 

chemical potential as a function of temperature. Discuss high and low T limits. 

 

[From the definition of number density (Ashcroft eq. 2.67): 

 

𝑛 = ∫ 𝑑𝜖 𝑔(𝜖)𝑓(𝑇, 𝜖)
∞

0

= 𝑔2 ∫ 𝑑𝜖
1

𝑒𝛽(𝜖−𝜇) + 1

∞

0

. 

 

Since the DOS 𝑔2 =
𝑚

𝜋ℏ2
 is constant  we can solve the integral analytically. By 

performing the change of variable 𝑥 = 𝛽(𝜖 − 𝜇) and successively 𝑢 = 𝑒𝑥, obtaining 

 

𝑛 =
𝑔2

𝛽
∫

𝑑𝜖

𝑒𝑥 + 1
=

∞

−𝛽𝜇

𝑔2

𝛽
∫

𝑑𝑢

𝑢

1

𝑢 + 1

∞

𝑒−𝛽𝜇

=
𝑔2

𝛽
log(𝑒𝛽𝜇 + 1). 

 

We invert the equation to get an expression for the chemical potential: 
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𝜇(𝑇) = 𝑘𝐵𝑇 log(𝑒𝑛 𝑔2𝑘𝐵𝑇⁄ − 1) 

 

The limit for  𝑇 → 0  is  𝜇(𝑇) → 𝑛 𝑔2⁄ , this is the Fermi energy. Note: the behavior of 

the chemical potential around zero temperature is non-analytic, i.e. cannot be 

expanded in a power law series.  

In the limit for 𝑇 → ∞ the chemical potential diverges as  𝜇(𝑇) ≈ 𝑘𝐵𝑇 log (
𝑛

𝑔2𝑘𝐵𝑇
). 

This would mean that the chemical potential at a certain point goes to zero for 

𝑇0 =  𝑛 𝑔2𝑘𝐵 log 2⁄ =  𝑇𝐹 log 2⁄ , and subsequently is negative. This would mean that 

there are not any occupied states anymore! This is, of course, impossible, and 

indicates that, when the temperature approaches the value of the Fermi energy at 

T=0 the (equilibrium) density is not anymore constant.  

 

3. Derive the expression for the density of electronic states for a four-dimensional 

electronic gas. 

 

[From the definition: 

  

𝑔4(𝜖) =
2

(2𝜋)4 ∫ d4𝐤 δ(𝜖 − ℏ2𝑘2 2𝑚⁄ ) =
2

(2𝜋)4

2𝜋2

Γ(2)
∫ d𝑘 𝑘3 δ(𝜖 − ℏ2𝑘2 2𝑚⁄ ) =

𝑚2

2𝜋2ℏ4 𝜖.] 

Here, we used the D-dimensional solid angle for D=4, where in general Ω𝐷 =
2𝜋𝐷/2

Γ(𝐷/2)
. 

 

 

2.4      Conductance Quantization in 1D ballistic quantum wires.        (20 pts) 

A Quantum Point Contact (QPC) is a low narrow channel joining two two-dimensional 

electron gas reservoirs, each maintained at two different chemical potentials 𝜇1 and 𝜇2 (see 

figure 1) by a voltage difference  V. 

 

Figure 2: left, schematic of the quantum point contact between the two reservoirs. Left: Measurement of the conductance 

between a gated QPC grown on a semiconductor heterostructure. Here the gate voltage controls the width of the contact. 

From van Wees et al. PRL 60, 848 (1988). 
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Let us calculate the conductance for a very narrow QPC by assuming ballistic transport 

through the contact (i.e. that the free electron conductance is limited only by the geometry 

of the contact itself). Let us treat the QPC as a 1D free electron gas otherwise. 

1. Due to the chemical potential difference electrons will be moving from one end of 

the contact to the other. Using the electron velocity, charge and density of states in 

1D  
𝑑𝑛

𝑑𝜖
 write an expression for the current density. Verify and justify through physical 

arguments that   𝑗 = 𝑒𝑣(𝜇1 − 𝜇2)
𝑑𝑛

𝑑𝜖
. 

 

[An electron with charge 𝑒 and velocity 𝑣 will contribute with a current 𝑒𝑣. The 

number of states contributing to the conduction is given by the chemical potential 

imbalance at the end of the two ends of the wire which can be approximated by 

(𝜇1 − 𝜇2)
𝑑𝑛

𝑑𝜖
. Therefore we get 𝑗 = 𝑒𝑣(𝜇1 − 𝜇2)

𝑑𝑛

𝑑𝜖
.] 

 

2. By substituting the values for the DOS and the potential difference obtain an 

expression for the conductance G=j/V. Verify that your result has indeed the 

dimension of a conductance. Comment the result. Does the conductivity depends on 

the material properties? Why this striking result would not necessarily hold in 

calculating the conductivity for a two dimensional electron gas? Evaluate it and 

obtain an evaluation of the corresponding resistivity in KOhm.  

 

[𝐺 = 𝑒2𝑣
𝑑𝑛

𝑑𝜖
.    Now In 1D the DOS is    

𝑑𝑛

𝑑𝜖
=

1

ℏ𝜋
√

𝑚

2𝐸
=

1

ℏ𝜋

1

𝑣
, therefore 𝐺 =

𝑒2

ℏ𝜋
=

2𝑒2

ℎ
 

I.e. the velocity terms in the current and in the DOS cancel each other, leaving a 

material independent constant. This correspond to a conductance of 𝐺0 = 7.75 ×

10−5 𝑆, corresponding to a resistance Ω0 = 12.9 KOhm.] 

The result found in the preceding point applies for a perfectly 1D channel.  When the contact 

is made larger along the y direction more single 1D channel open. Therefore we expect a 

quantization of the conductivity as a function of the contact width. This fundamental result 

has been measured in 1988 by van Wees and collaborators [Figure 1 right and PRL 60, 848 

(1988)]. Download and read the paper. 

3. Model the electrons in the contact as 2D electrons free along the x direction and 

confined by a hard box potential along the y direction. Obtain the quantization 

condition for ky. How many different ky values are possible for an electron on the 

Fermi circle for a given width W of the channel? 

 

[The quantization condition for a hard box is of course 𝑘𝑦 = ± 𝑛𝜋 𝑊⁄ , 𝑛 = (1,2, … ) 

i.e. the Fermi circle is cut by horizontal lines at constant 𝑘𝑦, which are denser the 
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wider is the box. The number of channels (i.e. of allower 𝑘𝑦 states is 𝑁𝑐, i.e. the 

largest integer smaller than 𝑘𝐹𝑊 𝜋⁄ .] 

 

4. A more rigorous treatment of the conductivity is given in the paper (Equation 2), 

involving the calculation of the average of the absolute value of kx over the Fermi 

circle. Justify and evaluate the integral (Equation 3 of the paper) giving all the 

fundamental passages, and arrive at the result of Equation 4.  

 

[We have that 

 〈|𝑘𝑥|〉 =
1

2𝜋𝑘𝐹
∫ 𝑑2𝑘 |𝑘𝑥|𝛿(𝑘 − 𝑘𝐹)

2𝜋

𝑊
∑ 𝛿 (𝑘𝑦 −

𝑛𝜋

𝑊
)𝑛  

 

I.e. we have to evaluate the average value of the longitudinal wave vector on the 

Fermi circle intersected by the 𝑘𝑦 =constant lines. The pre factor is just the length of 

the Fermi circle, the first dirac delta locates us on the circle itself, while the second 

deltas save only the points where the Fermi line intersects the allowed 𝑘𝑦 =constant 

lines. The factor 
2𝜋

𝑊
 is a jacobian there to make the sum of the distribution 

dimensionless.pvl] 

 

 


