
Holstein-Primakov transformation

The usual spin operators: Sx, Sy, Sz do not commute (for instance [Sx, Sy] = ih̄Sz), and
are therefore not conserved quantities. In a system where one can define a symmetry axis
(for instance a ferromagnet) the eigenstates of Sz are msh̄, with ms = −S . . . S. It is
convenient to introduce ”ladder” operators S± = Sx ± Sy so that for instance [Sz, S

+] =
h̄S+, and [Sz, S

−] = −h̄S−. These ladder operators are reminiscent of the bosonic ladder
operators, be it that they now act on the finite ladder −ms . . .ms. One can use this
property to define operators a, a†, which do have bosonic commutation rules (bosonisation)
through the Holstein-Primakov transformation:

S+ = h̄(2S − n)1/2a,

S− = h̄a†(2S − n)1/2,

Sz = h̄(S − n),

where n = a†a is the ”number” operator. The commutation rules are [a, a†] = 1 and
all others 0. In general these operators are quite cumbersome to work with. For small
deviations from the ground state, one can however linearize them by taking 〈n〉 ≈ 0 in
the first two equations. This leads to the linearized form:

S+ = h̄
√

2Sa,

S− = h̄
√

2Sa†,

Sz = h̄(S − a†a),

Ordered magnetism1

As a generic model for a magnetic material with localized spins one could define a sys-
tem consisting of antiferromagnetic two sublattices. The positions of the first one will be
labeled by i, the second one by j. The distances between sites within a single lattice are
denoted by k, the distances between two sites on different sublattices by l.
The interactions can now be split into two parts: one between spins on the same sublat-
tice (anisotropic ferro- or antiferromagnetic), and one between spins of different lattice
(anisotropic antiferromagnetic). The total hamiltonian now is H = H1 +H2 with:

H2 =
∑
i,k

SiJ
′(k)Si+k +

∑
j,k

SjJ
′(k)Sj+k

for spins on the same sublattice (J ′(k) is a diagonal tensor here with elements Jx(k),
Jy(k), and Jz(k)), and

H1 =
∑
i,l

SiJ(l)Si+l +
∑
j,l

SjJ(l)Sj+l

for spins on different sublattices (again a diagonal J(l)). In order to make the most efficient
use of the linearized Holstein-Primakov transformation, we start out with sublattices with
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rotated spin quantization axes by redefining our spin operators:

sxi = Sx
i

syi = Sy
i

szi = Sz
i

For the second:

sxj = Sx
j

syj = −Sy
j

szj = −Sz
j

The new operators still commute like the usual spin operators. The hamiltonian now
becomes:

H1 =
∑
i,l

Jx(l)sxi s
x
i+l − Jy(l)s

y
i s

y
i+l − Jz(l)szi szi+l

+
∑
j,l

Jx(l)sxj s
x
j+l − Jy(l)s

y
js

y
j+l − Jz(l)szjszj+l

H2 =
∑
i,k

J ′x(k)sxi s
x
i+k + J ′y(k)syi s

y
i+k + J ′z(k)szi s

z
i+k

+
∑
j,k

J ′x(k)sxj s
x
j+k + J ′y(k)syjs

y
j+k + J ′z(k)szjs

z
j+k

We can now use the linearized HP transformation to express our hamiltonian in terms

of the bosonic a† and a operators. We have sx = (s+ + s−)/2 =
√

(S/2)
(
a+ a†

)
, sy =

−i(s+−s−)/2 = −i
√

(S/2)
(
a− a†

)
, and sz = s−a†a, which is by the choice of a staggered

coordinate system the same on both sublattices. For the terms in the Hamiltonian we
now get for instance:

sxi s
x
i+l =

S

2

(
a†iai+l + a†ia

†
i+l + aia

†
i+l + aiai+l

)
syi s

y
i+l =

S

2

(
a†iai+l − a†ia

†
i+l + aia

†
i+l − aiai+l

)
szi s

z
i+l = −S

(
a†iai + a†i+lai+l

)
To save a bit of writing, we will assume from here on that the exchange interactions are
isotropic. T he full Hamiltonian now reads:

H1 = S
∑
i,l

J(l)
(
a†iai + a†i+lai+l + a†ia

†
i+l + aiai+l

)
+ S

∑
j,l

. . .

H2 = S
∑
i,k

J ′(k)
(
−a†iai − a

†
i+kai+k + aia

†
i+k + a†iai+k

)
+ S

∑
j,k

. . .
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This is of course a monster of a hamiltonian, even after leaving out the possible anisotropy
in J and J ′. Luckily, the situation becomes a lot simpler by fourier transforming the
hamiltonian using:

a~i =
1√
(N)

∑
~q

a~qe
i~q·~i

a†~i =
1√
(N)

∑
~q

a†~qe
−i~q·~i

For instance, both parts of the Hamiltonian contain the following form:

∑
j,l

J(l)
(
a†jaj + a†j+laj+l

)
=

1

N

∑
j,l

J(l)

∑
q,q′

a†qaq′e
−i (q−q′)·j

(
1 + e−i (q−q′)·l

)
=

∑
l

J(l)
∑
q

a†qaq

=
∑
q

a†qaqJ0

Here we used that
∑
j
e−i (q−q′)·j = δq,q′N/2, and defined the fourier transform of the

exchange interaction as:
Jq =

∑
l

J(l)e−i q·l

Since J is a real function, one has Jq = J−q. Other types of terms appearing in the
Hamiltonian are in H1:∑

j,l

J(l)(ajaj+l + a†ja
†
j+l) =

1

2

∑
q

Jq
(
aqa−q + a†−qa

†
q

)
and in H2 ∑

j,k

J ′(k)(aja
†
j+k + a†jaj+k) =

∑
q

J ′qa
†
qaq

Using the above relations the Hamiltonian can now be written in a more convenient form:

H = S
∑
q

2Aqa
†
qaq +Bq

(
a†qa
†
−q + aqa−q

)
Where Aq = J0 − J ′0 + J ′q, and Bq = Jq. The last term is only non-zero in the presence
of antiferromagnetic coupling between the sublattices. If Bq = 0, the hamiltonian is
diagonalized by the above procedure! This is for instance the case in a simple ferromagnet.
The magnon dispersion is then given by:

h̄ωq = 2SAq = 2S
(
J ′q − J ′0

)
For nearest neighbor interaction J(±a) = −J one has

Jq = −J
(
ei qa + e−i qa

)
= −2J cos(qa),

so that h̄ωq = 4JS(1− cos(qa)). For small q one has h̄ωq ∼ q2 leading to a magnetization
which decreases with increasing temperature as T 3/2. The low temperature heat capacity
increases with temperature as T 3/2.

3



Bogoliubov transformation for AF interactions

When Bq 6= 0 the second term introduces off-diagonal terms in the Hamiltonian, which
have a form similar as found for the He problem. Therefore, we should be able to diago-
nalize the Hamiltonian using a Bogoliubov transformation:

aq = uqbq + vqb
†
−q

a†q = uqb
†
q + vqb−q,

again with uq = u−q; vq = v−q, and u2q − v2q = 1. The Hamiltonian can now be written as

H = S
∑
q

h̄ωqb
†
qbq

provided that
2Aquqvq +Bq

(
u2q + v2q )

)
= 0

The eigenvalues are h̄2ω2
q = 4S2(A2

q − B2
q ). Since we have a two sublattice problem,

h̄2ω2
q = 4S2(A2

q+Q−B2
q+Q) will also be a solution of the problem, where Q is the magnetic

propagation vector. As an example we take the isotropic Heisenberg antiferromagnet with
nearest neighbor interaction, which has J ′ = 0; Aq = J0; Bq = Jq and J(l) = J for l = ±a
so that Jq = 2J cos(qa). The dispersion is then

h̄ωq = 2JS
√

1− cos2(qa) = 2JS |sin(qa)|

For Q = π/a we find the same solution. At small q this may be approximated as ωq ∼ q,
so that the low temperature heat capacity is expected to increase with increasing T as
T 3.

The formalism described here is easily extendable to a variety of realistic situations
such as anisotropic exchange, single ion anisotropy, helimagnetism, Ising magnets, pres-
ence of an external field, etc. For the case of non-ordered systems, one has to take higher

order terms in the HP transformation into account (
√

(S−n) =
√
S
[
1− (1/2S)a†a− . . .

]
), leading to the appearence of 4-spin operator terms in the hamiltonian. The effective
Hamiltonian can then be interpreted as a magnon Hamiltonian which includes magnon-
magnon interactions.
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