Holstein-Primakov transformation

The usual spin operators: S, S,, S, do not commute (for instance [S,,S,] = thS,), and
are therefore not conserved quantities. In a system where one can define a symmetry axis
(for instance a ferromagnet) the eigenstates of S, are mgh, with mg = —S...S. It is
convenient to introduce ”ladder” operators S* = S, &+ S, so that for instance [S,, S| =
ST, and [S,,S™] = —hS~. These ladder operators are reminiscent of the bosonic ladder
operators, be it that they now act on the finite ladder —my...ms. One can use this
property to define operators a, a', which do have bosonic commutation rules (bosonisation)
through the Holstein-Primakov transformation:

St = h(2S —n),

S~ = ha'(25 —n)'/?,
S, = h(S—n),
where n = a'a is the "number” operator. The commutation rules are [a,a] = 1 and

all others 0. In general these operators are quite cumbersome to work with. For small
deviations from the ground state, one can however linearize them by taking (n) ~ 0 in
the first two equations. This leads to the linearized form:

ST = hv2Sa,
S~ = hv2Sdl,
S. = WS —adla),

Ordered magnetism!

As a generic model for a magnetic material with localized spins one could define a sys-
tem consisting of antiferromagnetic two sublattices. The positions of the first one will be
labeled by ¢, the second one by j. The distances between sites within a single lattice are
denoted by k, the distances between two sites on different sublattices by (.

The interactions can now be split into two parts: one between spins on the same sublat-
tice (anisotropic ferro- or antiferromagnetic), and one between spins of different lattice
(anisotropic antiferromagnetic). The total hamiltonian now is H = Hy + Hy with:
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for spins on the same sublattice (J'(k) is a diagonal tensor here with elements J,(k),

Jy(k), and J,(k)), and

il

gl

for spins on different sublattices (again a diagonal J(I)). In order to make the most efficient
use of the linearized Holstein-Primakov transformation, we start out with sublattices with
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rotated spin quantization axes by redefining our spin operators:
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The new operators still commute like the usual spin operators. The hamiltonian now
becomes:
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We can now use the linearized HP transformation to express our hamiltonian in terms
of the bosonic al and a operators. We have s* = (st +57)/2 = \ﬂS/Q) (a + aT), sY =

—i(sT—s7)/2 = —i\ﬂS/Q) (a - aT>, and s* = s—a'a, which is by the choice of a staggered
coordinate system the same on both sublattices. For the terms in the Hamiltonian we
now get for instance:
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To save a bit of writing, we will assume from here on that the exchange interactions are
isotropic. T he full Hamiltonian now reads:

= SZ J(1) (a;rai + a;rHa,-H + a}aLl + aiaiH) + SZ .
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This is of course a monster of a hamiltonian, even after leaving out the possible anisotropy
in J and J’. Luckily, the situation becomes a lot simpler by fourier transforming the
hamiltonian using:

For instance, both parts of the Hamiltonian contain the following form:
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Here we used that Y e™ @97 = §,,N/2, and defined the fourier transform of the
j
exchange interaction as:

Jy=> J(l)e "
l

Since J is a real function, one has J, = J_,. Other types of terms appearing in the
Hamiltonian are in Hy:

> J(D(aja + a ;+l Z Z (aqa—q + a_qaZ)
0

and in H,
S T (k) (azal ) + alaj) = > Jraka,
] q

Using the above relations the Hamiltonian can now be written in a more convenient form:

H = SZZAaaq+B (afaly + aga_,)

Where A, = Jo — Jy + J,, and By = J,. The last term is only non-zero in the presence
of antiferromagnetic coupling between the sublattices. If B, = 0, the hamiltonian is
diagonalized by the above procedure! This is for instance the case in a simple ferromagnet.
The magnon dispersion is then given by:

hw, = 284, = 25 (J; = J)
For nearest neighbor interaction J(+a) = —J one has
Jg=—J (ei “ et q“) = —2J cos(qa),

so that hw, = 4JS(1 — cos(qa)). For small ¢ one has hiw, ~ ¢* leading to a magnetization
which decreases with increasing temperature as 7°%/2. The low temperature heat capacity
increases with temperature as 7°/2.



Bogoliubov transformation for AF interactions

When B, # 0 the second term introduces off-diagonal terms in the Hamiltonian, which
have a form similar as found for the He problem. Therefore, we should be able to diago-
nalize the Hamiltonian using a Bogoliubov transformation:

a, = uqbq—irvqbiq

a; = uqu]—i-vqb_q,

again with u, = u_g; v, = v_,, and ug — vg = 1. The Hamiltonian can now be written as

H =28 hwblb,
q

provided that
2Auqgv, + B, (ug + 1)3)) =0

The cigenvalues are li*w? = 45%(A2 — B2). Since we have a two sublattice problem,
hw? = 45%(A2,, — B2 ,) will also be a solution of the problem, where @ is the magnetic
propagation vector. As an example we take the isotropic Heisenberg antiferromagnet with
nearest neighbor interaction, which has J' = 0; A, = Jo; B, = J,and J(I) = J for | = +a
so that J, = 2.J cos(ga). The dispersion is then

hw, = 2J54/1 — cos?(qa) = 2JS |sin(qa)|

For Q = m/a we find the same solution. At small ¢ this may be approximated as w, ~ g,
so that the low temperature heat capacity is expected to increase with increasing 7T as
T3.

The formalism described here is easily extendable to a variety of realistic situations
such as anisotropic exchange, single ion anisotropy, helimagnetism, Ising magnets, pres-
ence of an external field, etc. For the case of non-ordered systems, one has to take higher
order terms in the HP transformation into account ( \ﬂS—n) =S [1 —(1/28)ata — .. }
), leading to the appearence of 4-spin operator terms in the hamiltonian. The effective
Hamiltonian can then be interpreted as a magnon Hamiltonian which includes magnon-
magnon interactions.



