Holstein-Primakov transformation

The usual spin operators: S_{x}, S_{y}, S_{z} do not commute (for instance $\left[S_{x}, S_{y}\right]=i \hbar S_{z}$), and are therefore not conserved quantities. In a system where one can define a symmetry axis (for instance a ferromagnet) the eigenstates of S_{z} are $m_{s} \hbar$, with $m_{s}=-S \ldots S$. It is convenient to introduce "ladder" operators $S^{ \pm}=S_{x} \pm S_{y}$ so that for instance $\left[S_{z}, S^{+}\right]=$ $\hbar S^{+}$, and $\left[S_{z}, S^{-}\right]=-\hbar S^{-}$. These ladder operators are reminiscent of the bosonic ladder operators, be it that they now act on the finite ladder $-m_{s} \ldots m_{s}$. One can use this property to define operators a, a^{\dagger}, which do have bosonic commutation rules (bosonisation) through the Holstein-Primakov transformation:

$$
\begin{aligned}
S^{+} & =\hbar(2 S-n)^{1 / 2} a \\
S^{-} & =\hbar a^{\dagger}(2 S-n)^{1 / 2} \\
S_{z} & =\hbar(S-n)
\end{aligned}
$$

where $n=a^{\dagger} a$ is the "number" operator. The commutation rules are $\left[a, a^{\dagger}\right]=1$ and all others 0 . In general these operators are quite cumbersome to work with. For small deviations from the ground state, one can however linearize them by taking $\langle n\rangle \approx 0$ in the first two equations. This leads to the linearized form:

$$
\begin{aligned}
S^{+} & =\hbar \sqrt{2 S} a \\
S^{-} & =\hbar \sqrt{2 S} a^{\dagger} \\
S_{z} & =\hbar\left(S-a^{\dagger} a\right)
\end{aligned}
$$

Ordered magnetism ${ }^{1}$

As a generic model for a magnetic material with localized spins one could define a system consisting of antiferromagnetic two sublattices. The positions of the first one will be labeled by i, the second one by j. The distances between sites within a single lattice are denoted by k, the distances between two sites on different sublattices by l.
The interactions can now be split into two parts: one between spins on the same sublattice (anisotropic ferro- or antiferromagnetic), and one between spins of different lattice (anisotropic antiferromagnetic). The total hamiltonian now is $H=H_{1}+H_{2}$ with:

$$
H_{2}=\sum_{i, k} S_{i} J^{\prime}(k) S_{i+k}+\sum_{j, k} S_{j} J^{\prime}(k) S_{j+k}
$$

for spins on the same sublattice $\left(J^{\prime}(k)\right.$ is a diagonal tensor here with elements $J_{x}(k)$, $J_{y}(k)$, and $\left.J_{z}(k)\right)$, and

$$
H_{1}=\sum_{i, l} S_{i} J(l) S_{i+l}+\sum_{j, l} S_{j} J(l) S_{j+l}
$$

for spins on different sublattices (again a diagonal $J(l)$). In order to make the most efficient use of the linearized Holstein-Primakov transformation, we start out with sublattices with

[^0]rotated spin quantization axes by redefining our spin operators:
\[

$$
\begin{aligned}
s_{i}^{x} & =S_{i}^{x} \\
s_{i}^{y} & =S_{i}^{y} \\
s_{i}^{z} & =S_{i}^{z}
\end{aligned}
$$
\]

For the second:

$$
\begin{aligned}
s_{j}^{x} & =S_{j}^{x} \\
s_{j}^{y} & =-S_{j}^{y} \\
s_{j}^{z} & =-S_{j}^{z}
\end{aligned}
$$

The new operators still commute like the usual spin operators. The hamiltonian now becomes:

$$
\begin{aligned}
H_{1}= & \sum_{i, l} J_{x}(l) s_{i}^{x} s_{i+l}^{x}-J_{y}(l) s_{i}^{y} s_{i+l}^{y}-J_{z}(l) s_{i}^{z} s_{i+l}^{z} \\
& +\sum_{j, l} J_{x}(l) s_{j}^{x} s_{j+l}^{x}-J_{y}(l) s_{j}^{y} s_{j+l}^{y}-J_{z}(l) s_{j}^{z} s_{j+l}^{z} \\
H_{2}= & \sum_{i, k} J_{x}^{\prime}(k) s_{i}^{x} s_{i+k}^{x}+J_{y}^{\prime}(k) s_{i}^{y} s_{i+k}^{y}+J_{z}^{\prime}(k) s_{i}^{z} s_{i+k}^{z} \\
& +\sum_{j, k} J_{x}^{\prime}(k) s_{j}^{x} s_{j+k}^{x}+J_{y}^{\prime}(k) s_{j}^{y} s_{j+k}^{y}+J_{z}^{\prime}(k) s_{j}^{z} s_{j+k}^{z}
\end{aligned}
$$

We can now use the linearized HP transformation to express our hamiltonian in terms of the bosonic a^{\dagger} and a operators. We have $s^{x}=\left(s^{+}+s^{-}\right) / 2=\sqrt{(S / 2)}\left(a+a^{\dagger}\right), s^{y}=$ $-i\left(s^{+}-s^{-}\right) / 2=-i \sqrt{(S / 2)}\left(a-a^{\dagger}\right)$, and $s^{z}=s-a^{\dagger} a$, which is by the choice of a staggered coordinate system the same on both sublattices. For the terms in the Hamiltonian we now get for instance:

$$
\begin{aligned}
s_{i}^{x} s_{i+l}^{x} & =\frac{S}{2}\left(a_{i}^{\dagger} a_{i+l}+a_{i}^{\dagger} a_{i+l}^{\dagger}+a_{i} a_{i+l}^{\dagger}+a_{i} a_{i+l}\right) \\
s_{i}^{y} s_{i+l}^{y} & =\frac{S}{2}\left(a_{i}^{\dagger} a_{i+l}-a_{i}^{\dagger} a_{i+l}^{\dagger}+a_{i} a_{i+l}^{\dagger}-a_{i} a_{i+l}\right) \\
s_{i}^{z} s_{i+l}^{z} & =-S\left(a_{i}^{\dagger} a_{i}+a_{i+l}^{\dagger} a_{i+l}\right)
\end{aligned}
$$

To save a bit of writing, we will assume from here on that the exchange interactions are isotropic. T he full Hamiltonian now reads:

$$
\begin{gathered}
H_{1}=S \sum_{i, l} J(l)\left(a_{i}^{\dagger} a_{i}+a_{i+l}^{\dagger} a_{i+l}+a_{i}^{\dagger} a_{i+l}^{\dagger}+a_{i} a_{i+l}\right)+S \sum_{j, l} \ldots \\
H_{2}=S \sum_{i, k} J^{\prime}(k)\left(-a_{i}^{\dagger} a_{i}-a_{i+k}^{\dagger} a_{i+k}+a_{i} a_{i+k}^{\dagger}+a_{i}^{\dagger} a_{i+k}\right)+S \sum_{j, k} \ldots
\end{gathered}
$$

This is of course a monster of a hamiltonian, even after leaving out the possible anisotropy in J and J^{\prime}. Luckily, the situation becomes a lot simpler by fourier transforming the hamiltonian using:

$$
\begin{aligned}
a_{\vec{i}} & =\frac{1}{\sqrt{(N)}} \sum_{\vec{q}} a_{\vec{q}} e^{i \vec{q} \cdot \vec{i}} \\
a_{\vec{i}}^{\dagger} & =\frac{1}{\sqrt{(N)}} \sum_{\vec{q}} a_{\vec{q}}^{\dagger} e^{-i \vec{q} \cdot \vec{i}}
\end{aligned}
$$

For instance, both parts of the Hamiltonian contain the following form:

$$
\begin{aligned}
\sum_{j, l} J(l)\left(a_{j}^{\dagger} a_{j}+a_{j+l}^{\dagger} a_{j+l}\right) & =\frac{1}{N} \sum_{j, l} J(l)\left[\sum_{q, q^{\prime}} a_{q}^{\dagger} a_{q^{\prime}} e^{-i\left(q-q^{\prime}\right) \cdot j}\left(1+e^{-i\left(q-q^{\prime}\right) \cdot l}\right)\right] \\
& =\sum_{l} J(l) \sum_{q} a_{q}^{\dagger} a_{q} \\
& =\sum_{q} a_{q}^{\dagger} a_{q} J_{0}
\end{aligned}
$$

Here we used that $\sum_{j} e^{-i\left(q-q^{\prime}\right) \cdot j}=\delta_{q, q^{\prime}} N / 2$, and defined the fourier transform of the exchange interaction as:

$$
J_{q}=\sum_{l} J(l) e^{-i q \cdot l}
$$

Since J is a real function, one has $J_{q}=J_{-q}$. Other types of terms appearing in the Hamiltonian are in H_{1} :

$$
\sum_{j, l} J(l)\left(a_{j} a_{j+l}+a_{j}^{\dagger} a_{j+l}^{\dagger}\right)=\frac{1}{2} \sum_{q} J_{q}\left(a_{q} a_{-q}+a_{-q}^{\dagger} a_{q}^{\dagger}\right)
$$

and in H_{2}

$$
\sum_{j, k} J^{\prime}(k)\left(a_{j} a_{j+k}^{\dagger}+a_{j}^{\dagger} a_{j+k}\right)=\sum_{q} J_{q}^{\prime} a_{q}^{\dagger} a_{q}
$$

Using the above relations the Hamiltonian can now be written in a more convenient form:

$$
H=S \sum_{q} 2 A_{q} a_{q}^{\dagger} a_{q}+B_{q}\left(a_{q}^{\dagger} a_{-q}^{\dagger}+a_{q} a_{-q}\right)
$$

Where $A_{q}=J_{0}-J_{0}^{\prime}+J_{q}^{\prime}$, and $B_{q}=J_{q}$. The last term is only non-zero in the presence of antiferromagnetic coupling between the sublattices. If $B_{q}=0$, the hamiltonian is diagonalized by the above procedure! This is for instance the case in a simple ferromagnet. The magnon dispersion is then given by:

$$
\hbar \omega_{q}=2 S A_{q}=2 S\left(J_{q}^{\prime}-J_{0}^{\prime}\right)
$$

For nearest neighbor interaction $J(\pm a)=-J$ one has

$$
J_{q}=-J\left(e^{i q a}+e^{-i q a}\right)=-2 J \cos (q a),
$$

so that $\hbar \omega_{q}=4 J S(1-\cos (q a))$. For small q one has $\hbar \omega_{q} \sim q^{2}$ leading to a magnetization which decreases with increasing temperature as $T^{3 / 2}$. The low temperature heat capacity increases with temperature as $T^{3 / 2}$.

Bogoliubov transformation for AF interactions

When $B_{q} \neq 0$ the second term introduces off-diagonal terms in the Hamiltonian, which have a form similar as found for the He problem. Therefore, we should be able to diagonalize the Hamiltonian using a Bogoliubov transformation:

$$
\begin{aligned}
a_{q} & =u_{q} b_{q}+v_{q} b_{-q}^{\dagger} \\
a_{q}^{\dagger} & =u_{q} b_{q}^{\dagger}+v_{q} b_{-q},
\end{aligned}
$$

again with $u_{q}=u_{-q} ; v_{q}=v_{-q}$, and $u_{q}^{2}-v_{q}^{2}=1$. The Hamiltonian can now be written as

$$
H=S \sum_{q} \hbar \omega_{q} b_{q}^{\dagger} b_{q}
$$

provided that

$$
\left.2 A_{q} u_{q} v_{q}+B_{q}\left(u_{q}^{2}+v_{q}^{2}\right)\right)=0
$$

The eigenvalues are $\hbar^{2} \omega_{q}^{2}=4 S^{2}\left(A_{q}^{2}-B_{q}^{2}\right)$. Since we have a two sublattice problem, $\hbar^{2} \omega_{q}^{2}=4 S^{2}\left(A_{q+Q}^{2}-B_{q+Q}^{2}\right)$ will also be a solution of the problem, where Q is the magnetic propagation vector. As an example we take the isotropic Heisenberg antiferromagnet with nearest neighbor interaction, which has $J^{\prime}=0 ; A_{q}=J_{0} ; B_{q}=J_{q}$ and $J(l)=J$ for $l= \pm a$ so that $J_{q}=2 J \cos (q a)$. The dispersion is then

$$
\hbar \omega_{q}=2 J S \sqrt{1-\cos ^{2}(q a)}=2 J S|\sin (q a)|
$$

For $Q=\pi / a$ we find the same solution. At small q this may be approximated as $\omega_{q} \sim q$, so that the low temperature heat capacity is expected to increase with increasing T as T^{3}.

The formalism described here is easily extendable to a variety of realistic situations such as anisotropic exchange, single ion anisotropy, helimagnetism, Ising magnets, presence of an external field, etc. For the case of non-ordered systems, one has to take higher order terms in the HP transformation into account $(\sqrt{(} S-n)=\sqrt{S}\left[1-(1 / 2 S) a^{\dagger} a-\ldots\right]$), leading to the appearence of 4 -spin operator terms in the hamiltonian. The effective Hamiltonian can then be interpreted as a magnon Hamiltonian which includes magnonmagnon interactions.

[^0]: ${ }^{1}$ treatment following A. Zheludev

