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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 

The use of clear and compact notation is greatly encouraged, as well as the systematic use of 

dimensional checks of the expressions and results. When you are asked to “evaluate” 

something this means to provide a numerical evaluation of the expression. In this case, at 

times, it might be necessary to indicate a parameter whose explicit numerical value is not 

provided, i.e. 𝜔𝑐 = 1.76 𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 

given with 3 significant figures. 

 

4.1  Nearly-free electrons in Dirac-delta potential         (10 pts) 

Atoms are arranged in one-dimensional chain with lattice spacing a. Each atom is 

represented by the potential 𝑎𝑉0𝛿(𝑥).  

1. Assuming that the nearly-free electron approximation applies, calculate the bandgap 

for all the electronic bands.  

 

[The bandgap opens at the edge of the each brillouin zone and its value is twice the 

Fourier component of the potential at that point. Therefore 

Δ𝐺 = 2|𝑈𝐺| = 2 |
1

𝑎
∫ 𝑑𝑟 𝑎𝑉0𝛿(𝑥)𝑒𝑖𝑟𝐺

𝑎/2

−𝑎/2

| = 2𝑉0. 

The bandgap is the same for all the bands.] 

 

2. Consider the band near k=0. Using the second order perturbation theory write the 

expression for the the nearly-free electron band. 

 

[Near k=0, i.e. far from a bragg plane, the band dispersion can be obtained by the 

second order perturbation theory (Ashcroft eq. 9.13) 
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ℇ(𝑘) = ℇ𝑘
0 + ∑

|𝑈𝐺|2

ℇ𝑘
0 − ℇ𝑘−𝐺

0

´

𝐺
 

Here ℇ𝑘
0 = ℏ2𝑘2 2𝑚⁄  is the free electron dispersion. Since the Potential fourier 

component are G-independent we get 

 

ℇ(𝑘) =
ℏ2𝑘2

2𝑚
+

2𝑚

ℏ2
𝑉0

2 ∑
1

𝑘2 − (𝑘 − 𝐺)2

´

𝐺
=

ℏ2𝑘2

2𝑚
−

2𝑚

ℏ2
𝑉0

2 ∑
1

𝐺2 − 2𝑘𝐺

´

𝑛
. 

] 

 

3. The effective mass of an electron around the gamma point can be written as  
ℏ2

𝑚∗ =

𝜕2𝐸

𝜕𝑘2|
𝑘=0

. By performing the derivative under the sum sign give the expression for the 

effective mass as a function of the potential parameters.  

 

[
ℏ2

𝑚∗ =
𝜕2𝐸

𝜕𝑘2|
𝑘=0

=  
ℏ2

𝑚
−

2𝑚

ℏ2 𝑉0
2 ∑

8𝐺2

(𝐺2−2𝑘𝐺)3
´
𝑛 |

𝑘=0
=

ℏ2

𝑚
−

16𝑚

ℏ2 𝑉0
2 ∑

1

𝐺4
´
𝑛  

 

=
ℏ2

𝑚
−

2𝑚

ℏ2

𝑎4

𝜋4 𝑉0
2 ∑

1

𝑛4
´
𝑛 =

ℏ2

𝑚
−

2𝑚

ℏ2

𝑎4

𝜋4 𝑉0
2 𝜋4

90
=

ℏ2

𝑚
−

2𝑚

ℏ2

𝑎4

45
𝑉0

2. 

 

From this we obtain the effective mass:  

 

𝑚∗

𝑚
= [1 −

2𝑚2

ℏ2

𝑎4

45
𝑉0

2]

−1

. 

 

] 

 

4. Let now a=aB. How large should be V0 to have m*=1.1me? Evaluate V0 in appropriate 

units (eV, Ry or Hartree). Is that a strong potential on the atomic scale? What would 

you compare it with to decide? What happens if the potential changes sign? 

Comment. 

 

[Considering Hartree units (𝑒 = 𝑚 = ℏ = 1) we obtain: 𝑚∗ = [1 −
2

45
𝑉0

2]
−1

 Since the 

variation is small we can approximate to the first order, obtaining 𝑉0 = 1.5 Hartree = 

40.8 eV. This energy is 3 times the electron binding energy in an Hydrogen atom. 

 

If the potential changes sign the mass remains the same: you can have confinement 

also with a repulsive potential. 

Hint: ∑ 𝑛−4 = 𝜋4 90⁄ .∞
𝑛=1  
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4.2  Instability of a 1D electron gas            (10 pts) 

Consider a one dimensional electron gas, with linear density 𝑛 = 1 𝑎⁄ , with a the average 

spacing between electrons. 

1. Evaluate the Fermi energy, Fermi temperature and Fermi momentum and the 

average energy density of the system as a function of the spacing a. 

 

[For 1D system the Fermi Energy is 𝐸𝐹 = ℏ2𝜋2𝑛2 8𝑚⁄ ; this corresponds to a Fermi 

temperature of 𝑇𝐹 = ℏ2𝜋2𝑛2 8𝑚𝑘𝐵⁄ . 

The Fermi momentum is 𝑘𝐹 = 𝜋𝑛 2⁄ = 𝜋 2𝑎⁄ . Note that the Fermi momentum is the 

middle point of the positive half of the FBZ. 

The energy density is 𝑛𝐸 = (𝜋)−1 ∫ 𝑑𝑘 ℏ2𝑘2 2𝑚⁄ = ℏ2 𝑘𝐹
3 6𝑚𝜋⁄

𝑘𝐹

0
, =

𝜋𝑛

6
 ℏ2 𝑘𝐹

2 2𝑚𝜋 =
𝑛

6
𝐸𝐹 ⁄  corresponding to an average energy per electron of 

𝐸𝐹

6
. 

] 

 

2. Consider now a weak periodic potential 𝑉(𝑥) = 𝑉0cos (2𝑘𝐹𝑥) applied to the 

electrons. How many bangaps it opens and how many bands it creates? Calculate the 

dispersion 𝐸(𝑘) for the lowest energy band. 

 

[To find where the bandgap opens we have to recall the near zone boundary energy 

dispersion  

𝐸𝐤 =
1

2
[𝐸𝐤

0 + 𝐸𝐤+𝐆
0 ] ±

1

2
√(𝐸𝐤

0 − 𝐸𝐤+𝐆
0 )

2
+ 4𝑉𝐆

2 

(Ashcroft Eq. 9.26 – Lecture 8 slide 19). Here 𝐸𝐤
0 = ℏ2𝐤2 2𝑚⁄  is the free electron 

dispersion. The bandgap opens at a point k such that  𝐸𝐤
0 = 𝐸𝐤+𝐆

0 , i.e. in 1D k =

±(k + G), therefore a bandgap opens for every vector k = ±G/2. 

 

Let us now calculate the Fourier components of the potential. We can see that the 

potential is periodic over 
2𝜋

2𝑘𝐹
= 2𝑎 This corresponds to a doubling of thre real space 

period. i.e. a dimerization. We note that the Wigner-Seitz cell [−𝑎, 𝑎] and a FBZ cell 

[−
𝜋

2𝑎
,

𝜋

2𝑎
] = [−

𝐺0

2
,

𝐺0

2
] = [−𝑘𝐹 , 𝑘𝐹]! We note that FBZ edges is the Fermi surface of 

the 1D free electron gas and that´s where the first bandgap will appear. Therefore 

the first gap will open at the Fermi energy. This will have fundamental consequence 

for the stability of the system. 

 

Now the Fourier components of the potential are:  
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𝑉𝐺 =
𝑉0

2𝑎
∫ 𝑑𝑥 cos(2𝑘𝐹𝑥) 𝑒𝑖𝑥𝐺 =

𝑎

−𝑎

𝑉0

4𝑎
∫ 𝑑𝑥[𝑒𝑖𝑥(𝐺+2𝑘𝐹) + 𝑒𝑖𝑥(𝐺−2𝑘𝐹)]

𝑎

−𝑎

=
𝑉0

2
[
sin 𝑎(𝐺 + 2𝑘𝐹)

𝑎(𝐺 + 2𝑘𝐹)
+

sin 𝑎(𝐺 − 2𝑘𝐹)

𝑎(𝐺 − 2𝑘𝐹)
]

=
𝑉0

2
[sinc 𝑎(𝐺 + 2𝑘𝐹) + sinc 𝑎(𝐺 − 2𝑘𝐹)]. 

Remembering that the sinc function sinc 𝑥 =
sin 𝑥

𝑥
 has a maximum for 𝑥 = 0 we can 

see that the Fourier amplitude is indeed maximum for 𝐺 = ±2𝑘𝐹. The potential  

therefore opens a bandgap of about 2V0 at k = kF i.e. at the FBZ edge.] 

 

3. Determine the total energy of the electronic system at zero temperature as a 

function of 𝑉0.  

 

[The energy of the gapped system at zero T can be expressed as a sum on the k 

states, by integrating the energy dispersion  

𝐸𝐤 =
1

2
[𝐸𝐤

0 + 𝐸𝐤+𝐆
0 ] ±

1

2
√(𝐸𝐤

0 − 𝐸𝐤+𝐆
0 )

2
+ 4𝑉0

2 

We are interested on the first energy band, between [−𝑘𝐹 , 𝑘𝐹]. This band is given by 

the formula above, where we have to take 𝐺 = +2𝑘𝐹 for 𝑘 ∈ [−𝑘𝐹 , 0] and 𝐺 =

−2𝑘𝐹 for 𝑘 ∈ [0, 𝑘𝐹]. Since the band is symmetric we will use only the latter case in 

the integration below. In Hartree units such dispersion reads: 

𝐸𝐤 =
1

4
[𝑘2 + (𝑘 − 2𝑘𝐹)2] −

1

4
√[𝑘2 − (𝑘 − 2𝑘𝐹)2]2 + 16𝑉0

2

=
𝑘2

2
+ 𝑘𝐹

2 − 𝑘𝑘𝐹 − √[𝑘𝑘𝐹 − 𝑘𝐹
2]2 + 𝑉0

2 

𝐸[V0]

𝑉
=

1

𝑉
∑ 𝐸𝑘

𝑘

=
1

2𝜋
∫ 𝐸𝑘𝑑𝑘

𝑘𝐹

−𝑘𝐹

=
1

𝜋
∫ 𝐸𝑘𝑑𝑘

𝑘𝐹

0

= 

1

𝜋
∫ [

𝑘2

2
+ 𝑘𝐹

2 − 𝑘𝑘𝐹 − √[𝑘𝑘𝐹 − 𝑘𝐹
2]2 +

𝑉0
2

4
] 𝑑𝑘

𝑘𝐹

0

=
2

3𝜋
𝑘𝐹

3 −
𝑘𝐹

2𝜋
√𝑘𝐹

4 + 𝑉0
2 +

𝑉0
2

2𝜋𝑘𝐹
log

√𝑘𝐹
4 + 𝑉0

2 − 𝑘𝐹
2

|𝑉0|
. 

In the approximation for which 𝑉0 2𝑘𝐹
2⁄ ≪ 1 we obtain  

𝐸[V0]

𝑉
=

2

3𝜋
𝑘𝐹

3 −
𝑘𝐹

3

2𝜋
√1 +

𝑉0
2

𝑘𝐹
4 +

𝑉0
2

2𝜋𝑘𝐹
log [

𝑘𝐹
2

|𝑉0|
(√1 +

𝑉0
2

𝑘𝐹
4 − 1)] ≈ 

≈
2

3𝜋
𝑘𝐹

3 −
𝑘𝐹

3

2𝜋
(1 +

𝑉0
2

2𝑘𝐹
4) +

𝑉0
2

2𝜋𝑘𝐹
log [

𝑘𝐹
2

|𝑉0|
(1 +

𝑉0
2

2𝑘𝐹
4 − 1)] =

2

3𝜋
𝑘𝐹

3 −
1

2𝜋
𝑘𝐹

3

−
𝑉0

2

4𝜋𝑘𝐹
(1 + 2 log

2𝑘𝐹
2

|𝑉0|
) = 
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=
𝑘𝐹

3

6𝜋
−

𝑉0
2

4𝜋𝑘𝐹
(1 + 2 log

2𝑘𝐹
2

|𝑉0|
). 

Note that for 𝑉0 = 0 the energy density is equal to the value for the free Fermi gas found in 

1.] 

4. For a finite 𝑉0 is the energy change positive or negative? Why is that? What would be 

the main qualitative different in the case of a  2D or a 3D system? Comment. 

 

[The change is negative for |𝑉0| > 0. This means that for an arbitrarily small 

dimerization potential the bandgap opening is energetically favoured. This crucially 

depends on the fact that, for D=1, the bandgap opens at the Fermi momentum, 

therefore the filled states are lowered in energy while the empty states are raised by 

the bandgap opening.  

 

For D>1 the Fermi momentum is not commensurate anymore with a periodicity 

doubling, therefore the badngap opening for a dimerization will open a gap either 

above or below Fermi energy. This will not cause a net energy. 

 

4.3  Conductivity tensor and velocity-velocity correlations        (10 pts) 

In the Boltzmann theory of electron transport the temperature-dependnet conductivity 

tensor is given by the following general expression 

𝜎̂𝑖𝑗 = −𝑒2 ∫
𝑑𝐤

4𝜋3
(

𝜕𝑓0

𝜕𝜖
) 𝜏(𝐤)𝑣𝑖(𝐤) 𝑣𝑗(𝐤) 

where 𝑓0(𝜖, 𝑇) is the Fermi function and 𝑣𝑖(𝐤) is the i-th component 𝑖, 𝑗 = (𝑥, 𝑦, 𝑧) of the 

velocity vector 𝐯(𝐤). 

1. Consider a three dimensional electron system at zero temperature in the Drude 

approximation (i.e. momentum-independent relaxation time). Show that in this case 

the tensor reduces to 

𝜎̂𝑖𝑗 =
1

4𝜋3

𝑒2𝜏

ℏ
∫

𝑣𝑖(𝐤) 𝑣𝑗(𝐤)

|𝑣|
𝑑SF 

Where the integral is now on the (two dimensional) Fermi surface.  

(Hint: use the chain rule to convert the energy derivative into a momentum derivative 

and remember what happens to the Fermi function in the limit of 0 T…) 

 

[at zero T the Fermi function is a step at Fermi energy. The energy derivative is a 

delta function:  
𝜕𝑓0

𝜕𝜖
= 𝛿(𝜖𝐤 − 𝜖𝐹) = |

𝑑𝜖

𝑑𝐤
|

−1

𝛿(𝐤 − 𝐤𝐹) =  
1

ℏ|𝐯|
𝛿(𝐤 − 𝐤𝐹). We used the 

basic properties of the delta function and we did explicitly the derivative of the 
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velocity. The delta function simply means that the only integration is done over the 

Fermi surface.] 

 

2. Now show that for “free” electrons the conductivity tensor reduces to the Drude 

expression for the conductivity 

𝜎 =
𝑛𝑒2𝜏

𝑚
. 

(Hint: Carefully consider the symmetry of the tensor and of the free electron Fermi 

surface: you can evaluate most of the 𝜎̂𝑖𝑗 integrals without explicitly calculating them. 

You should need to explicitly calculate only a single element of the tensor…) 

 

[In the Drude model the electron are nearly-free, the Fermi surface is a sphere, the 

Velocity modulus is constant and everything reduces to evaluate the integral over a 

sphere of the product of the angular components: 

𝜎̂𝑖𝑗 =
𝑣𝐹

4𝜋3

𝑒2𝜏

ℏ
∫ 𝑑Ω 𝑘̂𝑖𝑘̂𝑗𝑘𝐹

2. 

Now, for symmetry reasons the product 𝑘̂𝑖𝑘̂𝑗  is symmetric over inversion for 𝑖 ≠ 𝑗. 

Since the integration volume is a sphere the integral vanishes. The only integrals than 

don´t vanish (and are indeed the same) are the one for which 𝑖 = 𝑗. In that case 

∫ 𝑘̂𝑧
2𝑑Ω = ∫ dφ

2𝜋

0

∫ 𝑑θ sin 𝜃 cos2 𝜃 =

𝜋

0

4𝜋

3
. 

By remembering that 𝑣𝐹 = ℏ𝑘𝐹/𝑚 and 𝑘𝐹 = (2𝜋2𝑛)1/3 the final result is 

𝜎̂𝑖𝑖 =
𝑣𝐹  𝑘𝐹

2

4𝜋3

𝑒2𝜏

ℏ

4𝜋

3
=

𝑒2𝜏 𝑘𝐹
3

3𝑚𝜋2
=

𝑛𝑒2𝜏

3𝑚
. 

The total conductivity is simply the Trace of the conductivity tensor: 

𝜎 = 𝑇𝑟[𝜎̂𝑖𝑗] = 3
𝑛𝑒2𝜏

3𝑚
=  

𝑛𝑒2𝜏

𝑚
. 

] 


