
 

 
 

Universität zu Köln  
II. Physikalishes Institut 

dr. Matteo Montagnese, prof. dr. Paul H.M. van Loosdrecht 
 

WS14/15 Condensed Matter Physics I  
Exercise 5. Semiconductors. 

Date:  18/12/2014         Handover: 08/01/2015 

 

Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 
The use of clear and compact notation is greatly encouraged, as well as the systematic use of 
dimensional checks of the expressions and results. When you are asked to “evaluate” 
something this means to provide a numerical evaluation of the expression. In this case, at 
times, it might be necessary to indicate a parameter whose explicit numerical value is not 
provided, i.e. 𝜔𝜔𝑐𝑐 = 1.76 𝐻𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 
given with 3 significant figures. 

 

6.1  conductivity from impurities            (10 pts) 

Let us consider the semiconductor GaAs (gallium arsenide). It is a direct gap  semiconductor 
(𝐸𝐸𝑔𝑔 ≃ 1.52 𝑒𝑒𝑒𝑒 at room temperature; disregard its temperature dependence). The 
conduction band effective mass is 𝑚𝑚𝑐𝑐 = 0.068 𝑚𝑚𝑒𝑒 and the valence band  𝑚𝑚𝑣𝑣 = 0.41 𝑚𝑚𝑒𝑒. 
The dielectric constant is 𝜖𝜖 = 14.6. 

Let us assume to dope the semiconductor with donors and suppose to describe the stateus 
of the excess electrons with a hydrogenoid model. 

1. Calculate the binding energy 𝐸𝐸𝑑𝑑 (in eV) of the excess electrons with respect to the 
conduction band bottom. 

2. Claculate the effective Bohr radius 𝑎𝑎𝐵𝐵∗  (in Å) of the those electrons, assuming that 
each of them Is in the fundamental hydrogenoid energy level. Is the value obtained 
compatible with the hydrogenoid model used? 

3. Assume that when the average distance between donor centers becomes 
comparable to 𝑎𝑎𝐵𝐵∗  the electron screen each other, becoming nearly-free electron and 
being promoted to the conduction band. Evaluate the value 𝑛𝑛𝑐𝑐𝑐𝑐 of the donor (and 
electron) density 𝑖𝑖𝑛𝑛 𝑐𝑐𝑚𝑚−3. 

4. Estimate the carrier density (electron and holes; 𝑛𝑛𝑐𝑐 + 𝑝𝑝𝑣𝑣 𝑖𝑖𝑛𝑛 𝑐𝑐𝑚𝑚−3) of the undoped 
semiconductor at the temperature of T=10 K by using the data given in the preamble. 
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5. By comparing the densities obtained at points 3 and 4 tell estimate if at T=100 K and 
for 𝑛𝑛𝑑𝑑 > 𝑛𝑛𝑐𝑐𝑐𝑐  the doped semiconductor is in the extrinsic (doping dominated) or 
intrinsic regime. 

6. At T=0 and for a donor density 𝑛𝑛𝑑𝑑 > 𝑛𝑛𝑐𝑐𝑐𝑐, is the GaAs an insulator, a semiconductor or 
a metal? Why? 

 

 6.2  Current in a Landau Level            (10 pts) 

Let us consider 2D free electron in a magnetic field B. In the Landau Gauge the vector  
potential is 𝐀𝐀 = (0,𝐵𝐵𝑥𝑥). The Hamiltonian is 
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the lowest level can be chosen as 
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where 𝑘𝑘 is a real number. The 𝜒𝜒(𝑥𝑥) is normalized over  (−∞,∞). 

1. Calculate the current on the generic state 𝑘𝑘, disregarding the normalization: 
 
𝑗𝑗𝑥𝑥(𝑥𝑥,𝑦𝑦) ∝ 𝜓𝜓𝑘𝑘∗(𝑥𝑥,𝑦𝑦)𝑣𝑣𝑥𝑥𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) + 𝑐𝑐. 𝑐𝑐.     and      𝑗𝑗𝑦𝑦(𝑥𝑥,𝑦𝑦) ∝ 𝜓𝜓𝑘𝑘∗(𝑥𝑥,𝑦𝑦)𝑣𝑣𝑦𝑦𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦) + 𝑐𝑐. 𝑐𝑐. 
 

2. Impose now periodic boundary condition along 𝑦𝑦: 𝜓𝜓𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝜓𝜓𝑘𝑘(𝑥𝑥,𝑦𝑦 + 𝐿𝐿). This 
allows only some values of k to be admissible. Which ones? Write the generic 
wavefunction normalized over the appropriate cell. 

3. Let us now consider non interacting electrons occupying all the allowed k´s. Obtain 
the density 

𝑛𝑛(𝑥𝑥,𝑦𝑦) = � |𝜓𝜓𝑘𝑘(𝑥𝑥, 𝑦𝑦)|2.
𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑

 

How this density depends from the y direction? Is the density n periodic along x? with 
which period? 
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6.3  Degenerate semiconductor            (10 pts) 

Consider a semiconductor for which the non-degeneracy condition is not verified. In other 
words you cannot assume 𝜖𝜖𝑐𝑐 − 𝜇𝜇 ≫ 𝐾𝐾𝐵𝐵𝑇𝑇 and 𝜇𝜇 − 𝜖𝜖𝑐𝑐 ≫ 𝐾𝐾𝐵𝐵𝑇𝑇. However, for this 
semiconductor the following relation 

𝑔𝑔𝑣𝑣(𝜖𝜖) = 𝑔𝑔𝑐𝑐(−[𝜖𝜖 − 𝐸𝐸0] + 𝐸𝐸0) 

holds. Here 𝑔𝑔𝑣𝑣(𝜖𝜖) 𝑎𝑎𝑛𝑛𝑛𝑛 𝑔𝑔𝑐𝑐(𝜖𝜖) are the DOS of the valence and conduction bands and 
2𝐸𝐸0 = 𝜖𝜖𝑐𝑐 + 𝜖𝜖𝑐𝑐. Moreover it is possible to neglect the impurity (intrinsic regime). 

1. Assume that the top of the conduction band is at the energy 𝜖𝜖𝑐𝑐 + 2Δ. Draw a 
qualitative drawing of the density of states 𝑔𝑔𝑐𝑐(𝜖𝜖), paying attention to its behavior at 
the two band extrema. In particular specify the qualitative behavior of the DOS at 
those points. 

2. By making use of the above-written relation, draw on the same graph 𝑔𝑔𝑐𝑐(𝜖𝜖) and 
𝑔𝑔𝑣𝑣(𝜖𝜖). 

3. Write the condition that determines the chemical potential and, by rearranging in a 
simple way one of the integrals, determine the chemical potential 𝜇𝜇 at every 
temperature. [Note: no explicit integration is needed! Moreover, put the energy zero 
at the half of the gap, in such a way that 2𝐸𝐸0 = 𝜖𝜖𝑐𝑐 + 𝜖𝜖𝑐𝑐 = 0.] 

4. Consider now a density of states of the form 𝑔𝑔𝑐𝑐(𝜖𝜖) = 𝐴𝐴�(𝜖𝜖 − 𝜖𝜖𝑐𝑐)(2Δ − 𝜖𝜖 + 𝜖𝜖𝑐𝑐). 
Determine the constant A in terms of the density of lattice sites 𝑛𝑛𝐿𝐿 and Δ. 

5. Express the effective mass at the bottom of the conduction band in terms of 𝑛𝑛𝐿𝐿 and 
Δ. Knowing that 𝑛𝑛𝐿𝐿 = 5.00 × 1022 𝑐𝑐𝑚𝑚−3 and that Δ = 27.7 eV evaluate the ratio 
𝑚𝑚𝑐𝑐 𝑚𝑚𝑒𝑒⁄ . 

Note: ∫𝑛𝑛𝑥𝑥√1 − 𝑥𝑥2 = �𝑥𝑥√1 − 𝑥𝑥2 + 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝑛𝑛 𝑥𝑥� 2⁄ . 
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