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Notice: In solving the proposed exercises clearly motivate the passages to reach the result. 

The use of clear and compact notation is greatly encouraged, as well as the systematic use of 

dimensional checks of the expressions and results. When you are asked to “evaluate” 

something this means to provide a numerical evaluation of the expression. In this case, at 

times, it might be necessary to indicate a parameter whose explicit numerical value is not 

provided, i.e. 𝜔𝑐 = 1.76 𝐻 (Gauss) Hertz. Otherwise specified, all the evaluations are to be 

given with 3 significant figures. 

 

5.1  Two-charge-carrier Drude Model           (10 pts) 

In treating the Hall problem in the presence of a magnetic field H along the z axis, it is useful 

to resort to the tensor formalism to link the components of the in-plan electric field and 

current:  

𝑬 = 𝜌̂𝒋 

where the resistivity tensor 𝜌̂ depends on the longitudinal resistivity 𝜌 and the Hall resistivity 

𝑅𝐻: 

𝜌̂ = (
𝜌 −𝑅𝐻𝐻

𝑅𝐻𝐻 𝜌
). 

 

For a  single carrier in the Drude model we have 𝜌 =
1

𝜎
=

1

𝑛𝑒2𝜇
 and 𝑅𝐻 =

1

𝑛𝑒𝑐
. 

Consider now a system with two types of charge carriers in the Drude model. The two 

carriers have the same density (n) and opposite charge (e and –e), and their masses and 

relaxation rates are m1, m2 and τ1, τ2, respectively. (You may want to use the mobility, μ=τ/m, 

instead of τ and m.) 

 

a. Introduce the two resistivity tensors 𝜌̂1  and 𝜌̂2 write down the equation linking the 

electric field and the two carrier currents j1 and j2.  

 

Solution: The common electric field will be proportional to the two currents through the 

conductivity tensor: 
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𝑬 = 𝜌̂1𝒋𝟏 

𝑬 = 𝜌̂2𝒋𝟐. 

 

b. Invert the two equations by Introducing the inverse resistivity tensors 𝜌̂1
−1  and 

𝜌̂2
−1 ; write the equation giving the total current as a function of the applied field as a 

function of the total resistivity tensor 𝜌̂−1. What is the relation between 𝜌̂−1 and 𝜌̂1
−1 

and 𝜌̂2
−1? 

 

Solution: The total current is linked to the field through the total resisitivity tensor 𝜌̂: 

𝑬 = 𝜌̂(𝒋𝟏 + 𝒋𝟐) 

By inverting the equations found in the preceding point to express 𝒋𝟏 and 𝒋𝟐 as a function 

of 𝜌̂2
−1 and 𝜌̂1

−1 we obtain:  

𝑬 = 𝜌̂(𝜌̂1
−1 + 𝜌̂2

−1)𝑬 

This is to say that 𝜌̂(𝜌̂1
−1 + 𝜌̂2

−2) = 𝟏, therefore we have: 

𝜌̂−1 = 𝜌̂1
−1 + 𝜌̂2

−1. 

 

c. By explicitly inverting the resistivity tensors Find the components of 𝜌̂−1; calculate the 

total magnetoresistance Δ𝜌 = 𝜌(𝐻) − 𝜌(𝐻 = 0), where H is the magnetic field. 

 

Solution: the resistivity tensor for the electron is 

𝜌̂1 = (
𝜌1 −𝑅𝐻𝐻

𝑅𝐻𝐻 𝜌1
) . 

The inverted tensor is: 

𝜌̂1
−1 =

𝟏

𝜌1
2 + 𝑅𝐻

2 𝐻2
(

𝜌1 𝑅𝐻𝐻
−𝑅𝐻𝐻 𝜌1

) . 

For the holes the mobility is different and the signs of the off-diagonal components is 

inverted (same density n but opposite charge): 

𝜌̂2
−1 =

𝟏

𝜌2
2 + 𝑅𝐻

2 𝐻2
(

𝜌2 −𝑅𝐻𝐻
𝑅𝐻𝐻 𝜌2

). 

The total inverted resistivity tensor is 

𝜌̂−1 = (
𝛼 𝛽

−𝛽 𝛼
) . 

where 

𝛼 =
𝜌1

𝜌1
2 + 𝑅𝐻

2 𝐻2
+

𝜌2

𝜌2
2 + 𝑅𝐻

2 𝐻2
 

𝛽 = 𝑅𝐻𝐻 (
1

𝜌1
2 + 𝑅𝐻

2 𝐻2
−

1

𝜌2
2 + 𝑅𝐻

2 𝐻2
). 

To find the resistivity we need to invert the tensor.  

𝜌̂ =
1

𝛼2 + 𝛽2
(

𝛼 −𝛽
𝛽 𝛼

) . 

The determinant of the matrix can be written as  

𝛼2 + 𝛽2 =  
(𝜌1 + 𝜌2)2

(𝜌1
2 + 𝑅𝐻

2 𝐻2)(𝜌2
2 + 𝑅𝐻

2 𝐻2)
 

The total resistivity is given by the diagonal elements of the resistivity matrix: 

𝜌(𝐻) =
𝛼

𝛼2 + 𝛽2
= ⋯ =

𝜌1

(1 + 𝜌1 𝜌2⁄ )2
+

𝜌2

(1 + 𝜌2 𝜌1⁄ )2
+

𝑅𝐻
2 𝐻2

𝜌1 + 𝜌2
. 
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Therefore the magnetoresistance is given by 

∆𝜌(𝐻) = 𝜌(𝐻) − 𝜌(𝐻 = 0) =
𝑅𝐻

2 𝐻2

𝜌1 + 𝜌2
. 

 

d. Calculate the total Hall coefficient for the system. If the two mobilities are equal what 

is the value of the Hall coefficient? Why? 

 

Solution: The Hall coefficient is given by the non-diagonal element of the total resistivity 

matrix 

𝑅𝐻(𝐻) = −
𝛽

𝛼2 + 𝛽2
= ⋯ = 𝑅𝐻𝐻

𝜌1
2 − 𝜌2

2

(𝜌1 + 𝜌2)2
= 𝑅𝐻𝐻

𝜌1 − 𝜌2

𝜌1 + 𝜌2
. 

If the two mobilities are equal then 𝜌1 = 𝜌2, therefore the Hall coefficient vanishes as 

𝜌1 − 𝜌2. 

 

5.2  Divalent impurities             (10 pts) 

Consider a semiconductior with a dielectric constant 𝜖 = 12.5 and a conduction effective mass 𝑚 =

0.067𝑚𝑒, doped with few divalent donors, that can thus be regarded as independent. Remember 

that the total binding energy of the He atom is 𝐸 = 5.81 𝑅𝑦. 

1. Write the expression and the numerical value (in eV) of the binding energy 𝜖1, respect to the 

conduction band, for a single electron on the donor. 

 

[For a single electron the energy is the energy for the He+ (Z=2) atom, renormalized with the 

dielectric constant (from Ashcroft eq. 28.29). 𝜖1 =
𝑚∗

𝑚𝑒

𝑍2

𝜖2 × 13.6 eV =  0.067 × 0.1024 ×

13.6 =  93.3 meV. ] 

  

2. Write the expression and the numerical value (in eV) of the binding energy 𝜖2, after the 

addition of a second electron on the donor. 

 

[The binding energy (with respect to the conduction band bottom) we have to renormalize 

the He atom binding energy in the same way we did above: 𝜖2 =
𝑚∗

𝑚𝑒

𝑍2

𝜖2 × 5.81 × 13.6 eV =

542 meV. ] 

   

3. Estimate the effective Bohr radius (in Å) of the impurity with one electron and judge if the 

“hydrogenic” approximation is reasonable. Do you expect that with two electrons the 

approximation gets better or worse? 

 

[The Bohr radius is renormalized in the following way 𝑟0 =
𝑚𝑒

𝑚∗

𝜖

𝑍
𝑎0 = 14.9 × 6.25 × 0.53 Å =

49.4 Å. The Bohr radius The average atomic radius will increase when we add another 

electron, basically up to around 100 Å. The approximation is just reasonable for one electron 
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and becomes better for two electrons, since the requirement for the approximation to work 

is that the potential fields need to vary smoothly across the donor radius.] 

 

4. Compute the average occupation of these (independent) donor by computing a suitable 

average. How much is it at 𝑇 = 0? 

 

[The average occupation of the Donor state is 

〈𝑛𝑑〉 =
2𝑁𝑑

1
2 𝑒𝛽(𝜖2−𝜇) + 1

 

Here 𝑁𝑑 is the impurity density. At T=0 the donor density is simply twice the impurity 

density. ] 

 

5. Determine the position of the chemical potential at 𝑇 → 0, in the hypothesis that only the 

mentioned donors contribute 

 

[If only donors contribute then (Ashcroft 28.39) we have 

2𝑁𝑑

𝑛𝑖
= 2 sinh 𝛽(𝜇 − 𝜇𝑖) ≈ exp 𝛽(𝜇 − 𝜇𝑖) 

By inverting we have 

𝜇 = 𝜇𝑖 + 𝑘𝐵𝑇 log(2 𝑁𝑑 𝑛𝑖⁄ )  

Here we have assumed that the effective mass difference between the conduction and 

valence band is null. ] 

 

6. If 𝑁𝑑 is the density of the donor dopants and one adds (monovalent) acceptor dopants as 

well with density 𝑁𝑎 = 𝑁𝑑, where will the chemical potential will go as 𝑇 → 0? 

 

[In that case we have to substitute the donor densitites with the difference between donor 

and acceptor centers, each weighted by their valence. Therefore we have  

𝜇 = 𝜇𝑖 + 𝑘𝐵𝑇 log(𝑁𝑑 𝑛𝑖⁄ ). 

] 

 

5.3  Transport properties in gapped Graphene    (10 pts) 

The bandstructure of graphene is well described by the tight-binding approximation. The peculiar 

degeneracy of energies at the six points in the reciprocal lattice (i.e. the vertex of the hexagonal FBZ 

constituting the Fermi surface) leads to a linear energy dispersion around those points, 𝐸(𝐤) =

ℏ𝑣𝐹|𝐤|. 

Around 𝑘0, i.e. one of the six points belonging to the degeneracy  the Fermi energy is at 𝐸𝐹 = 0 and 

the Fermi velocity is about 106ms-1. The excitations around the Fermi energy are well described by 

an effective 2x2 Hamiltonian: 

𝓗̂ = ( 
0 ℏ𝑣𝐹(𝑘̂𝑥 − 𝑖𝑘̂𝑦)

ℏ𝑣𝐹(𝑘̂𝑥 + 𝑖𝑘̂𝑦) 0
 ) 
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Here the reduced wavenumber is 𝐤 = 𝐤´ − 𝐤0. Here the matrix notation describes the exsistance of 

two groups of non-equivalent Fermi points. This is called pseudospin. 

1. Find the energies and wave functions of the electrons. Evaluate the the effective mass of the 

excitations near Fermi energy.  

[Hint: 𝑘̂𝑥  and 𝑘̂𝑦 are operators! Therefore the eigenfuctions are written as (
𝜓+

𝜓−
), with 𝜓+ 2D 

spatial wavefunctions. To treat the problem, first choose a suitable base for the spatial part in 

which the operator 𝓗 reduces to a numerical matrix. Then proceed to its diagonalization.] 

 

[The Hamiltonian is a linear tensor function of the momentum operator 𝐤̂ = (𝑘̂𝑥 , 𝑘̂𝑦). 

Therefore we can look for the eigenvectors of the form (
𝛼
𝛽) 𝑒𝑖𝐤∙𝐫 . On this basis we reduce to 

a numerical C-matrix in which the operators  𝑘̂𝑥 , 𝑘̂𝑦 reduce to their eigenvalues 𝑘𝑥 , 𝑘𝑦: 

𝓗 = ( 
0 ℏ𝑣𝐹(𝑘𝑥 − 𝑖𝑘𝑦)

ℏ𝑣𝐹(𝑘𝑥 + 𝑖𝑘𝑦) 0
 ) 

 

We can find the eigenvalues by solving the secular equation 

 

det(𝓗 − 𝐸𝕀) = 𝐸𝟐 − ℏ2𝑣𝐹
2𝑘2 = 0 

 

Consequently we find  𝐸 = ±ℏ𝑣𝐹𝑘, i.e. the excitations have a linear dispersion around E=0, 

(The Dirac point, coincident with Fermi energy in this case.) The effective mass would appear 

to be infinite (since the second derivative of the energy with respect to the momentum is 

zero, but that definition applies only to excitations with finite mass (where we can invert the 

equation ℏ𝑘 = 𝑚𝑣2). Instead a linear dispersion resembles the photon momentum-energy 

dispersion. Therefore we can say that these excitations have zero mass. ] 

 

2. Calculate the 2D density of states 𝑔0(𝜖)of the excitations near Fermi energy. 

 

[The density of states is 𝑔0(𝜖) =
1

2𝜋2 ∫ 𝑑𝐤 𝛿(𝜖 ∓ ℏ𝑣𝐹𝑘) =
1

𝜋
∫ 𝑑k 𝑘 𝛿(𝜖 ∓ ℏ𝑣𝐹𝑘) = 

1

𝜋(ℏ𝑣𝐹)2 ∫ 𝑑𝑡 sign(𝑡) 𝑡 𝛿(𝜖 − 𝑡) =
|𝜖|

𝜋(ℏ𝑣𝐹)2 .  

The DOS is linear and vanishing at the Dirac point.] 

Let us switch on an interaction that mixes the two pseudospin states in this way:  

ℋ∆ = ( 
∆ ℏ𝑣𝐹(𝑘𝑥 − 𝑖𝑘𝑦)

ℏ𝑣𝐹(𝑘𝑥 + 𝑖𝑘𝑦) −∆
 ) 

3. Find the energy eigenvalues. What happens to the band dispersion around Fermi? 

 

[Same consideration as in point 1. The secular equation is now 𝐸𝟐 − ∆2 − ℏ2𝑣𝐹
2𝑘2 = 0. 

Therefore we have  

𝐸∆(𝒌) = ±√∆2 + ℏ2𝑣𝐹
2𝑘2. 

We can see that the interaction opens a Gap at Fermi (Total gap 2∆)] 
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4. Calculate the effective mass tensor and the density of states 𝑔∆(𝜖) for the gapped system. 

Study the limit for Δ → 0. 

 

[The excitations acquire an effective mass near Fermi as  

𝑚∆ = ℏ2 (
𝜕2𝐸∆

𝜕𝑘2
|

𝑘=0

)

−1

= ±
|∆|

𝑣𝐹
2  

The mass tensor is diagonal and spherically symmetric. This confirms that for the ungapped 

graphene the mass is zero. 

The density of states is 𝑔∆(𝜖) =
1

2𝜋2 ∫ 𝑑𝐤 𝛿(𝜖 − 𝐸∆) =
1

𝜋
∫ 𝑑k 𝑘 𝛿(𝜖 − 𝐸∆) =  

=
1

𝜋(ℏ𝑣𝐹)2
∫ 𝑑t sign(𝑡) 𝑡 𝛿(𝜖 − 𝑡)

∞

∆

=  {

|𝜖|

𝜋(ℏ𝑣𝐹)2
  

0      

 |𝜖| > ∆
 |𝜖| < ∆

 

I.e. the DOS functional shape is unchanged! (Apart for the gap opening) 

 

5. Remembering Exercise 4.3, give an expression the diagonal components of the conductivity 

tensor in 2D for a gapped graphene sheet.  In doing that you should bring out the density of 

state and the relaxation time and evaluate them at a specific energy. Which one? Why? 

Study the limit for Δ → 0 

𝜎̂𝑖𝑗 = −𝑒2 ∫
𝑑𝐤

2𝜋2
𝑔∆(𝜖) (

𝜕𝑓0

𝜕𝜖
) 𝜏(𝐤)𝑣𝑖(𝐤) 𝑣𝑗(𝐤) 

[At T=0 the derivative of the dispersion is a Dirac delta. By applying the chain rule we obtain 

𝜎̂𝑖𝑗 = −𝑒2 ∫
𝑑𝐤

2𝜋2
𝑔∆(𝜖) (

𝜕𝑓0

𝜕𝜖
) 𝜏(𝐤)𝑣𝑖(𝐤)𝑣𝑗(𝐤) = − 

𝑒2

2𝜋2
∫ 𝑑𝐤 𝑔∆(𝜖)

𝜕𝑓0

𝜕𝜖
𝜏(𝐤)𝑣𝑖(𝐤)𝑣𝑗(𝐤)

= − 
𝑒2

2𝜋2
∫ 𝑑𝐤 𝑔∆(𝜖)𝛿(𝜖 − 𝜖𝐹) 𝜏(𝐤)𝑣𝑖(𝐤)𝑣𝑗(𝐤) 

We can now calculate the diagonal components of the conduction tensor; the Dirac delta 

simply restrics the integration over the Fermi Surface: 

𝜎̂𝑖𝑖 = − 
𝑒2

2𝜋2
𝑔∆(𝜖𝐹)𝜏(𝜖𝐹) ∫ 𝑑S𝐹𝑣𝑖

2(k) = − 
𝑒2

2𝜋2
S𝐹𝑔∆(𝜖𝐹)𝜏(𝜖𝐹)

𝑣2(𝜖𝐹)

3
. 

Here we used the spherical symmetry of the dispersion.  

𝜎̂𝑖𝑖 = − 
𝑒2

2𝜋2
S𝐹𝑔∆(𝜖𝐹)𝜏(𝜖𝐹)

𝑣𝐹
2

3

𝜖𝐹
2 − ∆2

𝜖𝐹
2 . 

On the Fermi surface S𝐹 = 𝜋𝑘𝐹
2 = 𝜋

𝜖𝐹
2−∆2

ℏ2𝑣𝐹
2   Moreover 𝑣2 = ℏ−2 (

𝜕𝜖

𝜕𝑘
)

2
=

ℏ2𝑣𝐹
4𝑘2

∆2+ℏ2𝑣𝐹
2𝑘2 =

ℏ2𝑣𝐹
4𝑘2

∆2+ℏ2𝑣𝐹
2𝑘2. Then 𝑣2(𝜖𝐹) = 𝑣𝐹

2 𝜖𝐹
2−∆2

𝜖𝐹
2 . 

Let´s examine our result a bit. For the exact system we have 𝜖𝐹 = 0, and 𝑔∆(0) = 0, For any 

gap value. So why bother at all? The fact is that in reality,  Graphene is almost always doped, 

either p or n. This means that Fermi energy is either above or below the Dirac point - or the 

bandgap extremum in the gapped system [𝜖𝐹 > ∆]. This gives a non-vanishing value for the 

DOS, the Fermi Surface area and the velocity values. 

 

6. Using the formal results from the Sommerfeld Expansion study the behavior of the 

conductivity for T>0. 
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𝜎̂𝑖𝑗 = − 
𝑒2

2𝜋2
∫ 𝑑𝐤 𝑔∆(𝜖)

𝜕𝑓𝑇

𝜕𝜖
𝜏(𝐤)𝑣𝑖(𝐤)𝑣𝑗(𝐤) == − 

𝑒2

𝜋
∫ 𝑑k k 𝑔∆(𝜖)

𝜕𝑓𝑇

𝜕𝜖
𝜏(𝐤)𝑣𝑖(𝐤)𝑣𝑗(𝐤) 

Let´s change the variable from k to the energy: 𝑘 =
√∆2−𝜖2

ℏ𝑣𝐹
, and 𝑑𝑘 =

𝜖𝑑𝜖

ℏ𝑣𝐹√∆2−𝜖2
. Therefore, 

considering the diagonal component: 

𝜎̂𝑖𝑖 = − 
𝑒2𝜏

3𝜋(ℏ𝑣𝐹)2
∫ 𝑑𝜖 

𝜕𝑓𝑇

𝜕𝜖
𝜖 𝑔∆(𝜖)𝑣2(𝜖𝐹) =

∞

∆

−  
𝑒2𝜏

𝜋2ℏ4
∫ 𝑑𝜖 

𝜕𝑓𝑇

𝜕𝜖
 (𝜖2 − ∆2)

∞

∆

 

In general, the integral is of the form 𝐼(𝜇) = ∫ 𝑑𝜖
𝜕𝑓𝑇

𝜕𝜖

∞

0
𝜑(𝜖). We can write this integrals in 

term of an integral involving the Fermi dispersion,Now by integrating by parts the integral 

and by considering that  lim
𝜖→∞

𝑓𝑇 = 0 and lim
𝜖→0

𝜑 = 0, we 

𝐼(𝜇) = ∫ 𝑑𝜖
𝜕𝑓𝑇

𝜕𝜖
𝜑(𝜖)

∞

0

= 𝑓𝑇(𝜖)𝜑(𝜖)|0
∞ − ∫ 𝑑𝜖 𝑓𝑇(𝜖)

𝜕𝜑

𝜕𝜖

∞

0

(𝜖) = − ∫ 𝑑𝜖 𝑓𝑇(𝜖)
𝜕𝜑

𝜕𝜖

∞

0

. 

This integral is now a Sommerfeld integral. Therefore we can apply the Sommerfeld 

expansion to the integral (Ashcroft eq. 2.70 and appendix C) 

𝐼(𝜇) = 𝜑(𝜇) +
𝜋2

6
(𝑘𝐵𝑇)2𝜑′′(𝜇) + 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

. 

We can then expand the functions around 𝜖𝐹 in order to take into account the variations of 

the chemical potential: 

𝐼(𝜇) = 𝜑(𝜖𝐹) + (𝜇 − 𝜖𝐹)𝜑′(𝜖𝐹) +
𝜋2

6
(𝑘𝐵𝑇)2[𝜑′′(𝜖𝐹) + (𝜇 − 𝜖𝐹)𝜑′′′(𝜖𝐹)] + 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

. 

Now in order to correctly evaluate the integral we have to also evaluate the variation of the 

chemical potential with the temperature (Ashcroft eq. 2.77) 

𝜇 = 𝜖𝐹 −
𝜋2

6
(𝑘𝐵𝑇)2

𝑔∆
′ (𝜖𝐹)

𝑔∆(𝜖𝐹)
+ 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

 

By substituting this above and getting the power two on we finally get: 

𝐼(𝜇) = 𝜑(𝜖𝐹) −
𝜋2

6
(𝑘𝐵𝑇)2 [

𝑔∆
′ (𝜖𝐹)

𝑔∆(𝜖𝐹)
𝜑′(𝜖𝐹) + 𝜑′′(𝜖𝐹)] + 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

. 

And by evaluating the derivative we get: 

𝜎̂𝑖𝑖(𝑇) = 𝜎̂𝑖𝑖 −
𝜋2

3

𝑒2𝜏

𝜋2ℏ4
(𝑘𝐵𝑇)2 + 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

. 

If 𝜖𝐹 < ∆, and  

𝜎̂𝑖𝑖(𝑇) = 𝜎̂𝑖𝑖 −
2𝜋2

3

𝑒2𝜏

𝜋2ℏ4
(𝑘𝐵𝑇)2 + 𝑂 (

𝑘𝐵𝑇

𝜇
)

4

. 

If 𝜖𝐹 > ∆. 

 

 


