
0.1 Repetition of the harmonic oscillator

The Hamiltonian for the harmonic oscillator H = k2/2m+mω2x2/2 can be
written as

H =
1

2
h̄ω(p2 + q2),

with p = k/
√
mh̄ω, and q =

√
mω/h̄x. The commutation relation between

p and q is:
[p, q] = pq − qp = −i

If we define operators
b = (q + ip)/

√
2

b† = (q − ip)/
√

(2)

then the hamiltonian reads

H = h̄ω
(
b†b+

1

2

)
,

and the commutator
[b, b†] = 1.

We also may compute the commutator of these operator with the hamiltonian
to give

[H, b†] = h̄ω
{(
b†bb† +

1

2
b†
)
−
(
b†b†b+

1

2
b†
)}

= h̄ωb†[b, b†] = h̄ωb†,

and
[H, b] = −h̄ωb

Then
[H, b†] |φE〉 = Hb† |φE〉 − b†H |φE〉 = h̄ωb† |φE〉

Hb† |φE〉 = (E + h̄ω)b† |φE〉 ,
and

Hb |φE〉 = (E − h̄ω)b |φE〉
This way we find new states like b |φE〉 with energy (E − h̄ω). Since the
hamiltonian is positive definite, there must be an end to finding lower energy
states such that for this lowest energy state |φ0〉 we have b |φ0〉 = 0. In order
to find this energy we first look in detail what b and b† actually do, starting
with a proper normalization. Since we know that b† |φE〉 = AE |φE+h̄ω〉 (see
above), we can find the normalization constant:

|AE|2 = 〈φE| bb† |φE〉 = 〈φE|
H

h̄ω
+

1

2
|φE〉 =

E + h̄ω/2

h̄ω
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So, now we have

b† |φE〉 =

√
E + h̄ω/2

h̄ω
|φE+h̄ω〉

b |φE〉 =

√
E − h̄ω/2

h̄ω
|φE−h̄ω〉

The lowest state is obviously found for E = h̄ω/2 so that b
∣∣∣φh̄ω/2〉 = 0

Now we can label the states by a number n > 0 representing the energy
(n+ 1/2)h̄ω, and since

〈φE| b†b |φE〉 = 〈φE| bb† − 1 |φE〉 = n

the eigenstates of b†b as |n〉. That is we can rewrite the problem as

b† |n〉 =
√
n+ 1 |n+ 1〉

b |n〉 =
√
n |n− 1〉

H |n〉 = h̄ω
(
ñ+

1

2

)
|n〉

from which we can easily evaluate the probability of any physical observable.
As an example let us look at the mean square amplitude in the ground state.

We have q = (b+ b†)/
√

2 or x = (b+ b†)/
√

2mω/h̄ so that |x2| ∝ (b+ b†)2 =

(bb+ b†b† + bb† + b†b). The squared amplitude is then

∣∣∣x2
∣∣∣ = h̄

〈0| bb† |0〉
2mω

=
h̄

2mω
.

It is equally easy to verify that |x| = 0 as expected. If we use the wavefunc-
tions |n〉 as a basis, we now see that the Hamilton matrix is nicely diagonal-
ized to:

h̄ω


1/2 0 . . .
0 3/2
...

. . .


This restatement of the problem in terms of raising (creation) and lowering
(annihilation) operators, and the occupation operator ñ has proven to be
usefull in solving the harmonic oscillator model, even though we can also solve
the problem more directly. For many body problems, the second quantization
language of introduced here turns out to be indispensible. We can not treat
the momentum and position operators of, say, 1023 particles in a similar way
we can directly solve the harmonic oscillator problem.
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0.2 Intuitive extension to lattice vibrations

The lattice modes are labeled by their branch index, s, and k-vectors ωs,k.
Each of these states can be considered as a harmonic oscillator like state. In
analogy to the harmonic oscillator one can therefore write for the Hamilton
operator for state k (we will restrict ourselves to one branch).

Hk = h̄ωk

(
b†kbk +

1

2

)
(1)

To calculate an expectation value one needs to then sum matrix elements
over all k-states. For example if we would like to calculate the amplitude of
the fluctuations, 〈x2〉, we first need to express x in terms of our operators
and then calculate the expectation value for a given k state:

xk =
1

2

√
2

√
h̄

mωk

(
b+ b†

)
(2)

〈nk|

1

2

√
2

√
h̄

mωk

(
b+ b†

)2

|nk〉 (3)

In the ground state this gives:

〈0|x2
k |0〉 =

h̄

2mωk
(4)

Now we can make the sum over the k-states, which with the help of the
density of states in k-space can be converted into an integral:

〈
x2
〉

=
∑
k∈BZ

h̄

2mωk
=

π∫
−π

h̄

2mωk
D(k)dk (5)

In d dimensions (one atom per cell, unit cell length = 1) this gives with
ωk = ω0| sin(k/2)| and D(k) = Adk

d−1:

〈
x2
〉

= Ad

π∫
−π

h̄

2mωk
kddk (6)

For 2 and 3 dimensions the integral is finite. In 1 dimension the integral
diverges as

lim
δ→0

4 ln

(
cot

δ

4

)
(7)
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