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DIELECTRICS

In contrast to METALS, there are solid materials which have a region of forbidden 

energies separating the highest occupied and the lowest unoccupied levels.

Energy, Ɛ

Density of levels, g(Ɛ)

Eg

A SOLID WITH AN ENERGY GAP, Eg, WILL BE  

NONCONDUCTING AT T= 0 K.

T> 0 K: nonvanishing probability that some 

electrons will be thermally excited across the 

energy gap into the lowest unoccupied bands, 

so-called CONDUCTION BANDS, leaving behind 

unocuppied levels in the highest occupied bands, 

so-called VALENCE BANDS.

Thermally excited electrons are capable of 

conduction and hole-type conduction can occur 

in the band out of which the electrons were 

excited.

Fraction of thermally excited electrons at temperature T: nex~ e-Eg/2k
B
T

Examples: For a material with Eg= 4 eV, at T= 300 K- nex~10-35 - no conduction at RT

Eg= 0.25 eV, at T= 300 K- nex~10-2, hence observable conduction can occur at RT



3

Definitions

SEMICONDUCTORS: solids that are insulators at T= 0 K, but whose 

energy gap is of such size that THERMAL EXCITATION can lead to 

observable conductivity at temperatures below their melting point

Examples: 

Silicon, Si: Eg= 1.12 eV (at 300 K); 1.17 eV (at 0 K)

Germanium, Ge: Eg= 0.67 eV (at 300 K); 0.75 eV (at 0 K)

Galium arsenide, GaAs: Eg= 1.4 eV (at 300 K)

INSULATORS (DIELECTRICS): 

a semiconductor with the Eg > 2 eV at 300 K

Typical resistivities r at 300 K:

Metals: r≈ 10-6 cm

Semiconductors: r≈ 10-3 - 109 cm

Dielectrics (insulators): r≈  1022 cm
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Metals vs. Semiconductors: electrical conductivity

For a semiconductor/insulator nex~ e-Eg/2k
B
T

so the conductivity, semicond, is a very rapidly INCREASING function of temperature T.

For a metal: metal = (ne2)/m 

metal DECLINES with increasing temperature T; 

major T-dependence comes from the relaxation time, .

Most striking feature of semiconductors is that, unlike metals, their electrical resistance 

declines with raising temperature: negative coefficient of resistance.

Important related pehomenon: 

PHOTOCONDUCTIVITY of semiconductors and insulators- the increase of conductivity 

produced by shining (visible) light (hn> 2 eV) on a semiconductor or insulator.
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Dielectric properties of INSULATORS

For insulators: Eg≥ 2 eV at 300 K- thermal excitation of free carriers would require 

temperatures far beyond melting point, T ≥ 30000 K

Examples: 

Eg(SiO2)=  9 eV

Eg(MgO)=  7.8 eV (optically transparent for wavelenghts 0.3 µm to 7 µm)

Eg(LaAlO3)=  5.2 eV

Eg(LiNbO3)≈  4.2 eV

Eg(BaTiO3)=  3.2 eV

CHARGE CARRIERS CANNOT FLOW FREELY IN AN INSULATOR: 

applied electric fields of substantial amplitude can penetrate into their interiors and thus affect 

their internal (atomic) structure. 

Important consequences for:

-Static dielectric response (static dielectric constant e0), which is made use of in capacitors and 

electronic devices

-Optical properties of an insulator: its response to AC electric field associated with 

electromagnetic radiation, reflected by its frequency dependent dielectric constant e(w) or 

equivalently its refractive index n(w)= √e(w).
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Macroscopic Maxwell equations of electrostatics

Theory of macroscopic Maxwell equations in a medium is a most valuable tool in 

dealing with static dielectric constant and optical properties of insulators.
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Macroscopic Maxwell equations of electrostatics
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Static response of a dielectric material to a steady electric field 

Static response of a dielectric material to a steady electric field represents only 

one part of the complete problem and, for practical purposes, actually a rather 

insignificant one. Time-dependent response to time-varying electric fields is 

more important from experimental and technological viewpoints.
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Relation between permittivity, conductivity and dielectric loss

Most obvious physical reason for time-dependent  dielectric response is the 

inevitable inertia of physical processes. 

No material is able to follow arbitrarily fast varying driving forces. The 

consequence of the inertia is that the time-dependent polarisation P(t) is not 

the same function of time as the driving electric field E(t).

d

V(t)

Spatially uniform electric field 

across the dielectric:

E(t)= V(t)/d

The charges induced on the 

electrodes are the sum of an 

instantaneous free space 

contribution and the delayed 

material polarisation and the 

dielectric displacement is 

D(t)=e0E(t)+ P(t). (1)

Time-dependent  polarizability

of a dielectric
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Relation between permittivity, conductivity and dielectric loss

For a linear dielectric system, for which the principle of superposition is valid, 

polarisation P(t) is given by the convolution integral

P(t)=e0 0
∫∞ f()E(t-)d                            (2)

- f(t) is the dielectric response function describing mathematically the response 

of the dielectric medium to specific electric excitations

- E(t) is the driving electric field

The physical meaning of the convolution is that the dielectric system has a 

memory of its past history and this may extend in practice to times as long as 

hours, days or even longer.

The polarisation after infinitely long charging time (under steady electric field 

E0) is given by:

P(∞)= P0= e0E0 0
∫∞ f(t) dt = e0c(0)E0 (3)

according to the definition of the steady-state dielectric susceptibility, c(0).
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Relation between permittivity, conductivity and dielectric loss

The frequency-domain response , that is the study of the response as a function of the 

excitation field frequency, relies on the Fourier transformation of a given function of 

time.

Fourier transform of a convolution integral is given by the product of the Fourier 

transforms of the two functions under the integral.

Applied to the time-dependent polarisation this theorem leads to:

FT[P(t)]= P (w)= e0c(w)E (w) (4)

P(w)- Fourier transform of time-dependent polarisation

E (w)- Fourier transform of excitation field

c(w)- frequency-dependent susceptibility, defined as the transform of the response 

function f(t)

c(w)= c‘(w)-ic“(w)= 
0
∫∞ f(t) exp(-i w t)dt (5)

Susceptibility is a complex function of frequency: it contains information not only about the

amplitude but also about the phase angle of the the components of the polarisation. 

Real part c‘(w) gives the amplitude of the polarisation in phase with the excitation field.

Imaginary part c“(w) gives the amplitude of the polarisation in quadrature with the

driving field.
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Relation between permittivity, conductivity and dielectric loss

The physical significance of relation (4) FT[P(t)]= P(w)= e0 c(w) E (w): 

- replaces the convolution integral from the time-domain with the simple product of two 
functions from the frequency-domain, c(w) E (w),

- the frequency-dependent susceptibility c(w) gives the response of the dielectric

material to a harmonic excitation of frequency w,

- simple measurement can yield c(w) by exciting the system at the particular freq. w,

- by sweeping the whole desired frequency range one may obtain the complete

functional relationship. 

The frequency-domain response of the dielectric system may be written in terms of

dielectric permittivity, e(w):

D(w)= e(w)E(w)= e0 [1+ c‘(w)-ic“(w)]E(w) (6)

Real part of dielectric permittivity e‘(w) consits of contributions from the free space and 

the dielectric itself; imaginary part of dielectric permittivity e“(w) is entirely made up by 

medium contributions. 
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Relation between permittivity, conductivity and dielectric loss

The current density that flows at a moment t through a dielectric is given by the 

direct current conductivity 0 and the dielectric displacement current:

I(t)=0E(t)+∂D/∂t                                       (7)

Fourier- transform I(t) and use FT[∂D/∂t]= iwD(w),

where D(w) is the Fourier transform of the time-dependent dielectric 

displacement D(t) and are mathematically two different functions; 

we obtain the frequency-domain relation:

I(w)= 0E(w)+ iwD(w)= 0E(w)+ iw[e0 E(w) + P(w)]=

= {0+ iwe0[1+ c‘(w)-ic“(w)]} E(w)

= {[0+ we0c“(w)]} + iwe0[1+ c‘(w) ]}E(w) (8)

- real part c‘(w) gives the component of the displacement current that flows in 

quadrature with the excitation field (thus not contributing to the power loss)

- imaginary part c“(w) gives the component in phase with the excitation field 

and therefore contributes to the power loss→ c“(w) is referred as the dielectric 

loss.
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Relation between permittivity, conductivity and dielectric loss

Typically dielectric measurements are concerened with the movement of charge carriers, 

that is with electric current. 

From Eqn. (8) it follows that the d.c. contribution refelected by 0 must appear in the

measurement result, since the instrument cannot discriminate between the true dielectric

response which does not contain 0 and the effective which does.

We can rewrite Eqn. (8)

I(w)= iweeff(w) E(w) (9)

where eeff(w) denotes the effective dielectric permittivity as measured by the instrument

and is given by

eeff(w)= e‘ (w) – i [e“ (w) + 0 /w]

= e0 {1+ c‘(w)-i [ c“(w)+ 0 /(e0 w)]} (10)

From Eqn. (10) appears clearly that the d.c. conductivity 0 makes contribution to the

apparent dielectic loss measured by a bridge system or other instrument, which diverges

towards zero frequency.

A dielectric response in which e“ (w) 1/ w, while e‘ (w) → const. as w →0 is a clear proof

that the dominant process is direct current conduction in the relevant frequency range.
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Kramers-Kronig relations

The real and imaginary part of the complex dielectric permittivity are not independent.

It should be possible to find the ultimate relationships that bind the real and the 

imaginary part of the dielectric susceptibility, and are the Kramers-Kronig formulae.

Eqn. (6) was derived for a linear dielectric system and for which the causality principle 

was valid, which will allow the extension of the lower limit of integration to -.

Whence the resulting Kramers-Kronig relationships have restricted applicability to linear 

systems and are ultimately a consequence of causality principle:

P integrals denote the Cuachy principal value of the integrals 

K-K relations give either c‘(w) orc“(w) at a particular value of the frequency in terms of 

the integral transform of the other throughout the entire frequency range (-, ).

or

(11a) (11b)

(12a) (12b)

Real part of susceptibility Imaginary part of susceptibility
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Relation between permittivity, conductivity and dielectric loss

Kramers-Kronig relations

A very direct consequence of the K-K relations is their assessment for zero-frequency:

(13)

Eqn. (13) relates the polarisation increment for a given polarisation mechanism or combination of 

mechanisms to the area of the loss curve plotted against the natural logarithm of frequency. 

A polarisation mechanism that leads to a strong polarisation must give rise to 

correspondingly high dielectric losses somewhere in the frequency spectrum.

It is impossible to have a dispersion-free dielectric material, i.e. one that has frequency-

independent real and imaginary parts of the susceptibility. 

Variation of the dielectric permittivity with frequency, known as dispersion, is a 

fundamental property of all dielectric materials.
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Polarization mechanisms

For most dielectrics their dielectric loss is significant only in certain limited ranges of frequency.

c‘(w) is almost frequency-independent outside the regions with important loss.

A high frequency permittivity is often defined, as e. It is given by the free space contribution e0 and 

of the contribution of all the other polarizing mechanisms at higher frequencies, and eqn. (10) can 

be rewritten for any such polarization process a as:

e (w) = ea+ e0 [ c‘(w)-i c“(w)]          (14)
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Theories of the local field and of the polarizability

It is necessary to relate the polarization density P(r) to macroscopic electric field E(r). 

Due to ion microscopic dimensions, ionic displacement and distortion are determined by 

the force due to the microscopic field at the position of the ion, diminished by the 

contribution to the microscopic field from the ion itself. This is the local (or effective) field, 

Eloc(r). 

For a basic evaluation of Eloc(r) see for instance Chapter 27 in Ashcroft & Mermin.

For the case when every equilibrium site in the equilibrium crystal is a center of cubic 

symmetry we get the Lorentz relation:

Eloc(r)= E(r)+(𝜺0)-1 P(r)/3

Or, in terms of dielectric constant of the cubic medium, using the constitutive relation 

D(r)= e E(r)= 𝜺0 E(r)+P(r)→ P(r)=(e - 𝜺0)E(r)

→ Eloc(r)=(e +2 𝜺0)E(r)/(3𝜺0)
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Clausius-Mossotti relation

e- 𝜺0

e+2𝜺0
=

Na

3

A microscopic theory is required to calculate a, which gives the response of the ions to 

the actual field Eloc(r) acting on them.

The resulting e can be used together with the Maxwell equations to predict the 

OPTICAL PROPERTIES of an insulator.

Clausius-Mossotti relation

Polarizability a of a medium

Polarizability a(d) of the type of ion at position d in the basis is the ratio of its induced 

dipole moment to the field actually acting on it.

The polarizability of the medium is the sum of the polarizabilities of the ions in a 

primitive cell. 

It can be shown that
P(r)= aEloc(r)/ V

And it follows that

N density of dipoles
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Theory of the polarizability

Induced dipole moment at position d in the ionic basis (R- Bravais lattice site):

p(R+d)+ eu(R+d)= a(d) Eloc(r)│r≈R

atomic 

polarizability

displacement 

polarizability

Atomic polarizability- due to distorsions of the ionic charge distribution

Displacement polarizability- due to ionic displacements; important in ionic crystals

Atomic polarizability

We allow the local field acting on the ion to be frequency-dependent: Eloc= Re(E0e
-iwt)

A crude classical model to estimate the frequency dependence of the polarizability of an 

ion (see derivation of Ashcroft&Mermin) treats the ion as an electronic shell of charge 

Zie and mass Zim, tied to a heavy immobile, undeformable ion core, by a harmonic 

spring of spring constant K= Zimw0
2

aat(w)=
Zie

2

m(w0
2-w2)

Zie

Zim

K

If w is small compared to w0, the atomic 

polarizability will be independent of frequency 

and its static value is: 

aat =
Zie

2

mw0
2
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Atomic polarizability and displacement polarizability of ionic crystals

Atomic polarizability

It is expectable that w0 is of the order of an atomic excitation energy devided by ħ. 

We can estimate the frequency below which aat will be frequency-independent:

ħw0 = √
ħ2Zi e

2

maat

√
ħw0 = Zi

10-24 cm3

aat 10.5 eV×

Measured atomic polarizabilities are of the order 10-24 cm3, so the frequency dependence of atomic 

polarizabilty will not come into play until frequencies corresponding to UV radiation.

Displacement polarizability

In ionic crystals we must consider the dipole moment due to the displacement of ions by the 

electric field.

Model:

- rigid-ion approximation (ignore the deformation of the electronic shells of the ions under the 

applied field)

- crystal with two ions per primitive cell, of charges e and –e

The dipole moment of the primitive cell is then p= ew, w=u+-u-, where u+, u- are the displacement 

of the positive and negative ion from its equilibrium position.
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Displacement polarizability

(from Ashcroft&Mermin, so GAUSS system of units!!!) 

The relative displacement induced by a frequency-dependent local field Eloc= Re(E0e
-iwt):

w= Re (w0e
-iwt),

w0= 

Atomic polarizability and displacement polarizability of ionic crystals

where M is the ionic reduced mass M-1=(M+)
-1 + (M-)

-1 and ϖ2=  k/M.

Accordingly

adis
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Dielectric permittivity of ionic crystals

Dielectric permittivity of an ionic crystal, given by the Clausius-Mossotti relation:

In particular:

Static dielectric constant is (ω<<ϖ):

High-frequency dielectric constant (i.e. high compared with the lattice vibrational frequencies,      

(ϖ << ω<< ω0):

𝜺 is the dielectric constant at optical frequencies and related to the index of refraction, n, n2= 𝜺

We can rewrite as:
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Long-wavelength optical modes of ionic crystals

wL
2 =            

Since the crystal is more polarizable at lower frequencies (e0> e∞)→ wL > wT

Lyddane-Sachs-Teller relation

(from Ashcroft&Mermin, so GAUSS system of units!!!) 
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Frequency-dependent dielctric constant for a diatomic  ionic crystal

wL

wT

w

e(w)

e(0)

e()

e is negative between wT and wL, thus radiation of frequency w between 

transverse and optical frequencies cannot propagate in the crystal 

(Multiple reflections of radiation  results in a reststrahl –way of 

measuring very precise wT and of producing very monochromatic 

infrared radiation)
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FERROELECTRICS
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(Auciello et al., 1998)

Why are ferroelectrics and especially their thin films interesting?

The various unique properties of ferroelectric thin films:
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Thanks to J. M. Triscone, 

University of Geneve
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DEFINITIONS 

Ferroelectric: a crystal is said to be ferroelectric when it has two or more 

discrete stable or metastable states of different nonzero electric polarization, 

in zero applied electric field, referred to as "spontaneous polarization", and it 

must be possible to switch between these states with a suitably large applied 

electric field.

The mechanism of switching the polarization is understood to take place on 

scales larger than the unit-cell scale, and generally to require the nucleation, 

growth and shrinking of domains through the motion of domain walls.

The observation of an electric hysteresis P-E loop is considered necessary to 

estabilish ferroelectricity.

Any of the two of the orientation states are identical (or entatiomorphous) in 

crystal structure and differ only in electric polarization vector at null electric 

field.
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Ferroelectric hysteresis

Perovskites or perovskite derivations:

BaTiO3, Pb(Zr,Ti)O3, (Bi,La)4Ti3O12 … 
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S. C. Abrahams and E. T. Keve,

Ferroelectrics 2,129 (1971)

Record ferroelectric polarization (100 µC/cm2) is held by PbZr0.2Ti0.8O3 and BiFeO3 epitaxial thin films 

(bulk single crystals do not exist for the PZT and are difficult to get for BFO)
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FERROELECTRICS: Basic concepts
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From Lines&Glass, Principles and Applications of Ferroelectrics
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1920, Valasek: Rochelle salt 

(NaKC4H4O6
.4H2O)- its polarization could be 

reversed by application of an electric field.

First display of ferroelectric behavior!



History (2) : discovery of more ferroelectrics

SLOW acceptance of ferroelectricity as a subject worthy of more general study was 

the fact that ANY SMALL DEVIATIONS FROM THE CORRECT CHEMICAL 

COMPOSITION of Rochelle salt seemed to destroy ferroelectricity, leading to 

experimental problems of reproducibility and a GROWING CONVICTION THAT THIS 

WAS ONE OF NATURE‘S GREAT ACCIDENTS! 

1935-1938, Busch and Scherrer: first series of ferroelectric crystals were 

produced, the greatest significance of this event was the discovery of a whole 

set of series of isomorphous crystals and not just an isolated example -

phosphates and arsenates, the prototype being                      

- KH2PO4 (KDP): with a single transition at TC~ 122 K.                                                      

- NH4H2PO4(ADP): did not seem to have a net spontaneous polarization 

below TC▬ it is ANTIFERROELECTRIC!

Like Rochelle salt, KDP and ADP remain piezoelectric even after their 

ferroelectric/paraelectric transition → most of the technical applications focused on 

their peizoelectric rather than ferroelectric properties: ADP has 30% electromechanical 

coupling efficiency at RT, it was the principal material for underwater sound transducer 

and submarine detectors in World War II, replacing the very temperature-dependent 

Rochelle salt.
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KDP and ADP: their crystal structure is also simpler than Rochelle salt and 

thus easier to be treated theoretically. For the next decade it was thought 

quite likely that the existance of hydrogen bonds was necessary, if not 

sufficient, condition for the polar instability to occur.
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1945-1946, Wul and Goldman: barium titanate BaTiO3 (BTO) with 

perovskite structure was found to have a dielectric constant of 1000 to 

3000 at RT and even higher as  temperature raised. 

Soon after, ferroelectricity was reported in BTO,  hence hydrogen 

hypothesis of ferroelectricity had to be abandoned.

BaTiO3 is the

- 1st ferreoelectric without hydrogen bond

- 1st ferreoelectric with more than one ferroelectric phase

- 1st ferreoelectric  with a non-piezoelectric prototype / paraelectric phase

Crystal structure of the prototype phase was cubic centrosymmetric with 

very high symmetry and the unit cell has only 5 atoms!!! 

- encouraging for the theorists!

- became the forerunner of the largest single class of all ferroelectrics, the 

oxygen octahedral ferroelectrics made up of basic BO6 building blocks

History (3):  discovery of perovskite oxide ferroelectrics, barium titanate BaTiO3
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History (4): theoretical progress at the MACROscopic level 

Phenomenologic (thermodynamic) theory of ferroelectrics

PHENOMENOLOGICAL or macroscopic theories of dielectrics (and 

ferroelectrics in particular) treat the material in question as a continuum 

disregarding any underlying atomic structure.

Theory had progressed more rapidly by focusing mainly on thermodynamic 

concepts, due to the ability to relate macroscopic measureables and to 

include with ease changes of external constraints, such as stress.

There is a distinct difference between ferromagnetic (FM) and ferroelectric 

(FE) theories in that one can nearly always neglect mechanical coupling in 

the FM (magnetostrictive effects are usually in parts per million), whereas 

strains associated with the onset of ferroelectricity are often of essential 

importance, at 1 % or larger.                                                                                                                            



39

Phenomenologic (thermodynamic) theory of ferroelectrics

Energy function capable of describing both polar and non-polar phases: 

approach perfected in 1949-1954 by Ginzburg and Devonshire, with specific 

reference to BaTiO3 (for which the accumulation of an immense amount of 

experimental data, coupled with the occurrance of three different FE phases 

with different polar axes, enabled a thorough test of the method).

Fields are postulated in sufficient number to describe the thermal, elastic, 

and dielectric properties of the macroscopic system.

The laws of thermodynamics and classical mechanics are used to obtain the 

relationships between them.

The dielectric system is possible to be described by three independent 

variables chosen from the pairs: 

(temperature T, entropy S)

(stress X, strain x)

(Maxwell field E, dielectric displacment D)

Coupling between the order parameter, i.e. polarization P, and strain x is 

usually large enough in FE to be considered.
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Thermodynamic potentials, e.g. elastic 

Gibbs energy G1:

G1= U-TS-Xixi

In the prototype (non-polar) state, (1) Di=0, 

xi=0; (2)Di=D is oriented along one of the 

crystallographic axes only;(3) all stresses 

Xi=0; (4) non-polar phase is 

centosymmetric) we can write:

G1= (a/2)D2+(g/4)D4+(d/6)D6

G1 is measured from the non-polar 

(prototype) phase and the coefficients g,d

are temperature-independent.

Phase transition‘s order depends on the 

sign of g →for g, d> 0: second-order 

phase transition

The Maxwell field E (parallel to D) is 

E=(G1/D)T:

E= aD+gD3+dD5

a>0, G1 has only one minimum at D=0

a<0, G1 acquires two minima at non-zero 

values of the displacement

Since E=(G1/D)T the minima describe the 

equilibrium values of the spontaneous 

polarization.

Spontaneous polarization PS undergoes a continuous 

(second-order) phase transition as a passes through zero  

and a has the meaning of the reciprocal permittivity at 

zero-field, a= kX,T >TC and is assumed to have the 

following linear temperature dependence 

a= b(T-TC) with b a positive constant

So closely below TC: 

PS
2= b(TC-T)/g, as PS → 0

k X,T = b(T-TC)+3gPS
2, as PS → 0                                                      

so k X,T = 2b(TC-T), T< TC

Lines & Glass, Principles and Applications of Ferroelectrics

Second-order FE phase transition

LiNbO3 (1200°C)

LiTaO3 (620°C)
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First-order FE phase transition

For g < 0, d> 0, and both T-independent:  

first-order phase transition

Possible for the potential G1 to develop equal minima at 

D=0 and at non-zero values D= ± DC (P= ± PC).

Parameter a is still the reciprocal isothermal permittivity

at constant stress in the non-polar phase and

Devonshire assumption is again that

a=b (T-T0),

but T0 is the Curie-Weiss temperature, not equal to the

Curie temperature TC

Writing g= -g , we have

G1=(b/2)(T-T0)D
2 – (g /4)D4+ (d/6)D6

Assuming b, g and d to be positive constants we get

the dielectric equation of state

E=b (T-T0)D- g D3+ d D5

Transition takes place at 

T=TC=T0+(3/16)(g )2(bd)-1

And at the transition temperature T=TC

PS
2=PC

2= 3g /4d

Zero-field permittivity

kX,T= 3g 2/(4d)+ 8b (TC-T), T→ TC
-

kX,T= 3g 2/(16d)+ b (TC-T), T → TC
+

Permittivity is finite but discontinuous at TC

The low temperature polar phase can exist at 

temperatures above TC as a metastable phase, 

because a first order PT does not reflect a singularity in 

thermodynamic potential. And the high-temperature 

phase can persist below TC as a metastable phase. 

→THERMAL HYSTERESIS EFFECTS

Lines & Glass, Principles and Applications of Ferroelectrics

A first-order transition point is not a singularity but merely a point at which the 

thermodynamic potentials of the two phases are equal. 

Examples 

BaTiO3 (TC=120°C), all its 

three PT are 1st order

PbTiO3 (TC= 493°C)
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History (5) : theoretical progress at the MICROscopic level

Simplicity of the perovskite lattice structure allowed theoretical progress at 

the microscopic level as well:

1950, Slater- assumed that the ferroelectric  behaviour of BaTiO3 was 

caused by long range dipolar forces that via the Lorentz local effective field 

tended to destabilize the high symmetry configuration favoured by the local 

forces

This explanation became the basic model for DISPLACIVE (as opposed to 

ORDER-DISORDER) FERROELECTRIC PHASE TRANSITIONS

The concept of ‘rattling‘ titanium became popular when acceptable results 

were obtained by assuming that one could focus on the motion of the Ti ion 

in a rigid framework of the rest of the lattice. 

This approach led to progress: 

1960, Andersen and Cochran- realized that the theory should properly be 

cast within the framework of lattice dynamics and that one should focus on 

one of the lattice modes (THE SOFT MODE), involving the ionic motions of 

all constituent atoms as the basic variable in terms of which to describe the 

displacive lattice instability.
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SOFT MODES of FERROELECTRICS

Soft phonon (associated with a structural phase transition):

Phonon mode, which coincides with a lower-symmetry structure, and is very

much amplified immediately before the onset of phase transition from a higher-

symmetry structure.

Lattice vibration in the perovskite ABX3 unit cell: mutual vibrations of the 3 

sublattices and by displacement modes of the X6 octahedron

Brillouin zone is a simple cubic lattice and the soft modes are G15, M3 and 

R25



44

SOFT MODES of FERROELECTRICS

Displacive phase transitions in BaTiO3
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BaTiO3 phase transitions

Condensation of G15(optical) mode at the center of the Brillouin zone (BaTiO3)

cubic PE tetragonal FE
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First-principle calculations of phonon dispersions

In BaTiO3, the unstable mode is dominated by 

the Ti displacement and the Ba 5p states do not 

hydridize significantly with the valence band.

In PbTiO3, the Pb participates in the polar 

distortion and Pb 6s “lone-pair” states hybridize 

with the oxygen 2p states. 

Similar considerations apply to the behavior of 

KNbO3: the alkali-metal cation does not 

participate in the distortion, and the ground-state 

structure resembles that of BaTiO3.
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Origin of ferroelectricity in perovskite oxides

Ronald E. Cohen

Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch 

Road NW, Washington DC 20015, USA

FERROELECTRIC materials are characterized by a switchable macroscopic 

polarization. Most technologically important ferroelectrics are oxides with a 

perovskite structure. The origin of their ferroelectric behaviour is unclear, however, 

and there is incomplete understanding of why similar, but chemically different, 

perovskites should display very different ferroelectric behaviour. The great 

sensitivity of ferroelectrics to chemistry, defects, electrical boundary conditions and 

pressure arises from a delicate balance between long-range Coulomb forces (which 

favour the ferroelectric state) and short-range repulsions (which favour the 

nonpolar cubic structure). To model the transition accurately, total-energy 

techniques are required which incorporate the effects of charge distortion and 

covalency. Here I report results of electronic-structure calculations on two classic 

examples of ferroelectric perovskites, BaTiO3 and PbTiO3, and demonstrate that 

hybridization between the titanium 3d states and the oxygen 2p states is essential for 

ferroelectricity. The different ferroelectric phase behaviour of the two materials is 

also clear: in PbTiO3, the lead and oxygen states hybridize, leading to a large strain 

that stabilizes the tetragonal phase, whereas in BaTiO3 the interaction between 

barium and oxygen is completely ionic, favouring a rhombohedral structure.

Modern theory of ferroelectric perovskites
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Modern theory of ferroelectrics applied to perovskite  titanates

Energy as a function of soft-mode distorsion
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Modern theory of ferroelectrics applied to perovskite  titanates
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Modern theory of ferroelectrics 

applied to perovskite  titanates



51

Theory of polarization: a modern approach

The bonding has a mixed ionic/covalent character in typical ferroelectric 

oxides, with a sizeable fraction of the electronic charge shared among ions in 

a delocalized manner→ fallacy of the Clausius-Mossotti (classic ionic) picture 

and relation, which assumes that the charge distribution of a polarized solid 

system is given by the superposition of localized contributions, each providing 

an electric dipole.

Ionic NaCl crystal: extreme ionic case Silicon crystal: extreme covalent case

Electric-field induced (pseudo)charge density
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Theory of polarization: a modern approach

How is induced/spontaneous polarization measured?

Open-circuit

Charges pile up on the surfaces of the 

FE crystal upon stress application

Short-circuit

The FE crystal is inserted into a shorted capacitor; the 

surface charges are then being removed by the 

electrodes, and the induced polarization is measured by 

the current flowing through the wires.

FEFE

Apply 

stress

Apply 

stress

1. By using the direct piezoelectric effect in piezoelectrics/ ferroelectrics

Notice that, in the adiabatic limit, j goes to zero and Δt goes to infinity, while the integral stays finite. Also currents are 

much easier to measure than dipoles or charges, and therefore (b), much more than (a), is representative of actual 

piezoelectric measurements.
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How is induced/spontaneous polarization measured?

Theory of polarization: a modern approach

2. By using the electrically switchable character of FE spontaneous polarization

Measured current is given in (b): the difference between the current obtained during the P pulse (indicated in red) 

and the U pulse (indicated in blue) is very clear. The leakage current (due to the electronic transport across the 

ferroelectric layer) is visible while applying the U pulse. Similar behavior can be inferred from the subsequent N 

and D pulses. By integration over time of the obtained free-leakage current peak (i.e. U(D)-P(N)), normalized to 

the total electrode area and averaged between both voltage polarities, a total amount of switchable polarization is 

obtained.The experiment measures neither PA(down state) nor PB (up state) but their difference and it is only an 

additional symmetry argument that allows one to infer the value of each of them from the actual experimental 

data.

(b)(a)

Positive-Up-Negative-Down (PUND) method
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Theory of polarization: a modern approach

λ - a dimensionless adiabatic time: λ varies continuously from 0 

(corresponding to the initial system) to 1 (corresponding to the 

final system).

In order to focus the discussion onto the spontaneous 

polarization of a FE, we now let λ scale the sublattice 

displacements (the lengths of the arrows in the figure), leading 

from a centrosymmetric reference structure (λ = 0) to the 

spontaneously polarized structure (λ = 1). 

The spontaneous polarization may be written as the integral:

The role of adiabatic currents in measuring the induced and spontaneous polarization 

suggests a new approch in dealing with the microscopic theory of polarization, which 

must be an intensive bulk property, insensitive to the boundary conditions.

→ BERRY-PHASE theory of polarization (developed in the 1990th) can yield 

the “formal‟ polarization

Effective polarization:



55

Berry-phase theory of polarization (formulation in continuous k- space)

electronic contribution ionic contribution

For a crystalline  system, the self consistent potential has the lattice periodicity; the eigenfunctions are of the 

Bloch form

And obey the Schrödinger equation. 

All these quantities depend on λ that varies continuously but slowly in time and the time t  in the current 

density j= dP/dt can be eliminated by replacing dP/dt →dP/dλ .

Berry connection

Berry phase

This result is independent of the path traversed through parameter space and of the rate of traversal, as long as it 

is adiabatically slow, so that the result depends only on the end points!

Implicit is that the system must remain insulating everywhere along the path, otherwise the adiabatic condition fails.

Atomic position

Fourier 

transform



56

Ferroelectric Random Access Memory cell – Principal idea

Ferroelectric
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MULTIFERROICS
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Ferroic order parametrs

Hans Schmid
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Karin M. Rabe, Charles H. Ahn, Jean-Marc Triscone  Eds., Physics of Ferroelectrics. A Modern Perspective, Topics Appl. Physics 105 (2007)

Ferroelectric/ferroelastic domains
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Ferroelectric/ferroelastic domains

Karin M. Rabe, Charles H. Ahn, Jean-Marc Triscone  Eds., Physics of Ferroelectrics. A Modern Perspective, Topics Appl. Physics 105 (2007)
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CL Jia, K. Urban, I. Vrejoiu et al, Nature Materials 2008
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Polarization-Magnetization coupling possible?
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Lone-pair active ferroelectrics: an approach towards perovskite oxide, ABO3, 

multiferroic materials

Chemical incompatibility between magnetism and conventional ferroelectricity is related 

to the fact that the most common mechanism for ferroelectricity in perovskite-structure

oxides involves the presence of a transition metal cation on the perovskite B site with a 

formal d0 electron configuration. For magnetism to occur in such transition metal oxides 

a partially filled d shell is indispensable.
C. Ederer and  N. A. Spaldin, Current Opinion in Solid State and Mater. Sci.,  2005 
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Examples: BiFeO3, BiMnO3

Lone-pair active ferroelectrics: an approach towards perovskite oxide, ABO3, 

multiferroic materials
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Ferroelectric (TC= 1100 K) with record polarization, P[111]= 95 mC/cm2, and antiferromagnetic

(TN= 640 K) with canted spins (weak ferromagnetic)→ intrinsically multiferroic at RT!

BiFeO3
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Extrinsic magneto-electric coupling between two layers: ferromagnetic CoFe and 

antiferromagnetic ferroelectric BiFeO3
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Mechanisms for electric polarization of spin origin

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501
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The symmetric exchange interaction working 

between the neighboring spins, Si  and Sj , may 

induce striction along a specific crystallographic 

direction Πij. 

For P to be macroscopically produced, the spin

modulation should be commensurate with the 

crystal lattice and the induced striction should show 

no cancelation after the sum of the bonds over the 

crystal lattice. 

For example, the up–up–down–down spin 

arrangement along the atomically alternating A–B 

lattice (see (b)) can break the inversion symmetry, 

and the inequivalent exchange striction working 

between the up–up (or down–down) spin pair and 

the up–down (or down–up) one can produce P.

The exchange-striction mechanism predicts the 

emergence of P along the bond direction for the AB 

lattice (i.e. alternating array of two distinctive 

magnetic sites MA and MB as shown in (a)), with (b) 

↑↑↓↓ spin order or (c) dimer-singlet formation.

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501

Mechanisms for electric polarization of spin origin
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ORTOFERRITES, RFeO3 (R= Gd, Tb, Dy)

Models of exchange striction in RFeO3 of 

an orthorhombic (Pbnm) perovskite unit cell 

with the A-type (a) and G-type (b) magnetic 

structures. The blue solid (dotted) lines

represent attractive (repulsive) interactions. 

The plus and minus symbols denote the 

relative spin direction of each ion. (c)–(f ) 

Magnetic structures of phases I–IV shown 

in figure 18. Only the most strongly coupled 

pairs of Fe spins and Gd spins are depicted 

with large light blue ellipsoids. The filled 

blue circles represent the displaced 

position of Gd along the c-axis from its 

original position (open circles). Note that G, 

A, C, and F denote NaCl-type, layered-

type, rod-type AF, and ferromagnetic 

components with modulation vectors (π, π, 

π), (0, 0, π), (π, π, 0), and (0, 0, 0) in the 

cubic setting, respectively. The subscripts 

x, y, and z denote the directions of the 

components along the a, b, and c axes, 

respectively.

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501
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The spin current is viewed as flowing between

the canted spin sites Si and Sj (with eij  being an unit 

vector connecting these two sites), which produces the 

polarization P under the influence of the spin orbit 

coupling (SOC) (figure (f )). This P can be of genuine 

electronic origin, yet in reality the exchange striction 

plays an important role in determining the magnitude 

of P. Therefore, this term is often called the inverse 

Dzyaloshinskii–Moriya (DM) interaction, in which the 

intervening ligand atom (e.g. oxygen) can displace so 

as to favor the DM interaction (figure (e)). Such a spin-

current model has been very powerful in recent 

exploration studies of multiferroics, since transverse 

screw spin configurations, such as cycloidal and 

transverse-conical spin orders, can always produce 

spontaneous P irrespective of magnetic modulation 

vectors, namely commensurate or incommensurate.

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501

Mechanisms for electric polarization of spin origin
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Types of spiral magnetic structure on a chain of magnetic moments S(r) 

Schematic illustrations of types of spiral magnetic structure on a one-dimensional array of 

magnetic moments S(r). They include (a) proper screw, (b) cycloidal, (c) longitudinal-conical, 

and (d) transverse-conical magnetic structures. The directions of macroscopic polarization P 

calculated from the spin-current model or inverse DM model are also indicated for their 

respective structure. Other spiral structures (a) and (c) may potentially generate P due to the 

spin-dependent p–d hybridization mechanism on some specific crystal structures.
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Perovskite manganites

(a) Schematic illustration of spin/orbital 

ordered state and magnetic exchange 

interactions for LaMnO3. (b) The solved

magnetic structures at Mn sites in the 

paraelectric AF phase (Tc < T < TN) and FE 

AF phase (T <Tc) for (Tb, Dy)MnO3

(qm = 1/3). (c) Temperature profiles of 

electric polarization along the a, b, and c 

axes for TbMnO3. (d) The corresponding

temperature dependence of the polarized 

neutron scattering intensity

at Q = (4, +qm, 1). I↓ and I↑ indicate the 

scattering intensities for the neutron spin 

parallel and antiparallel to Q, respectively.

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501
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The spin-dependent p–d hybridization mechanism is based 

on the fact that the locally polar bond eil connecting the spin 

site i and the ligand site l can be modulated by the spin-

direction dependent hybridization arising from the SOC 

(figure (h)). When the sum over the crystal lattice sites is not 

cancelled, the macroscopic P can survive. The spin-

dependent p–d hybridization model considers (g) a single 

pair of M and X sites, and local P is induced along the bond 

direction due to (h) the spin-dependent modulation of 

covalency between the magnetic d orbital and ligand p 

orbital.

With some appropriate crystallographic lattice such as (i) 

MX4 tetrahedra, this term can avoid cancellation and cause 

macroscopic P.

Spin-dependent p–d hybridization mechanism does need 

both SOC and specific lattice form, but can occur irrespective 

of commensurate or incommensurate order. Thus, we can

sometimes identify which mechanism is working for the 

emergence of multiferroicity in the material by knowing the 

crystal and magnetic structure precisely. 

It is to be noted that two of these mechanisms can coexist in 

actual multiferroics.

Tokura, Seki and Nagaosa: Rep. Prog. Phys. 77 (2014) 076501

Mechanisms for electric polarization of spin origin
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