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1 Introduction

Disordered materials are characterized by a complex mechanical response related to the
coexistence of dynamical processes taking place over multiple time and length scales.
Despite the intense research effort undertaken during the last decades, several of their
key properties still remain poorly understood. A common aspect of these materials is
that, by varying some external parameter, they can usually undergo structural arrest,
e.g. a glass can be obtained quenching a liquid below a temperature known as the
glass transition temperature, Tg. Significantly, the understanding of the dynamics in
disordered systems is very relevant in several scientific domains as, e.g., biology: in
fact, globular proteins are colloids, DNA is a stiff polymer and the lipids forming cell
membranes are essentially surfactants.

The aim of the present work is to use dynamic light scattering to investigate the dy-
namical response of the covalent bonded glass-former B2O3 both close to the structural
arrest and in the arrested state. Dynamic light scattering is a widespread technique
useful to investigate the dynamics in ergodic systems [BP76]. Its application close to
the structural arrest or in the arrested state is, instead, more difficult. Some schemes
based on multi-speckle detection using CCD cameras have been recently proposed to
overcome these limitations [WW93], though only few experiments have been carried out
up to now.

Within the present thesis, a multi-speckle setup will be installed and optimized at the
Physics Department of the University of Trento to work on samples close to the structural
arrest. The multi-speckle detection provides a crucial advantage in the dynamic light
scattering, since it simultaneously measures the dynamics of many equivalent speckles.
This fact allows increasing significantly the amount of collected data in a certain time
period and thus enhancing the accuracy of the derived results. Nevertheless, studying
the dynamics of a disordered system, we have to average over time as well as over
the number of considered speckles. In ergodic systems the time and ensemble average
are considered as equivalent but in systems out of equilibrium this is not more the
case, so that the order of averaging over time and space becomes important [CW99].
Therefore, two different approaches to calculate the autocorrelation function are tested
and described in the following in order to explore their advantages or disadvantages in
various conditions.

The distributions and fluctuations of the measured quantities also provide important
information about the studied system. Recent works have proposed dynamic light scat-
tering techniques to investigate the dynamical heterogeneity in glassy systems [Dur05].
In the present thesis, an alternative approach to probe the dynamical heterogeneity is
tested, investigating the variances of the autocorrelation parameters as a function of the
measurement time.
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In what follows, the dynamics of B2O3 as a function of temperature will be studied with
the aid of a CCD-camera and the obtained results will be compared to these of previous
works. Below the glass transition temperature ageing effects appear clearly and the
change of relaxation time as a function of ”experimental” (waiting) time in the ageing
boron oxide will be discussed.
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2 Theoretical background

2.1 Glass systems

2.1.1 Historical overview

Glasses are known since the prehistoric times. The natural glass obsidian was used to
make knifes and arrow tips. The most antique objects made of glass were found in
Egypt dating from 3000 BC. Methods of manufacturing glass were already discovered
in Mesopotamia around 4500 BC. The production technique in Europe came from the
civilizations of Mycenae and Crete. Glass blowing was probably invented in Phoenicia
around 50 BC and spread by the Roman Empire in Europe. During the Middle Ages the
art of colouring glass was developed stimulated by the church in England. Around the
10th century Venice became predominant in the world of glass and led to the art of the
”Venice Crystal” produced in Murano. The book Arte vetraria by Neri was published
in Pisa in 1612 and translated into many other languages giving an overview of the
knowledge about glass at this time. The glass manufacturing spread over the whole
Europe especially in England, France and Bohemia. By the end of the 18th century
chemical discoveries based on the replacement of natural alkali by sodium from sea salts
led to an industrial revolution in the glass fabrication. The introduction of mechanized
processes revolutionized again the glass industry to the end of the 19th century.

The use of glass for optical purposes together with the technological progress induced
a better physical and chemical understanding. Glass lenses were already known by
the Greeks whose knowledge was transferred to the Arabic world. Eyeglasses were
fabricated in Italy in 1280 and the first telescopes in Italy and Netherlands around 1590.
A spectacular progress was achieved at the end of the 18th century when B2O3, P2O5

and numerous other oxides were systematically introduced thanks to the collaboration
of Abbe, Schott and Zeiss in Jena, Germany. Zeiss maintained a monopoly in the
production of optical glasses, in particular for microscopes, until the First World War.

The studies of various glasses with different properties led to a more generalized concept
of the vitreous state defining it as a non-crystalline solid (Tammann,1930). The scientific
approaches changed slowly from the first pure phenomenological research toward more
and more structural studies. After the Second World War due to the stronger interactions
between research and technology the blossoming period of the true glass sciences began.
Besides classical applications such as for housewares, construction, lighting, chemical
industry etc. many new techniques for glass utilization appeared like laser, optical fibres
or energy transformation.
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2.1.2 Classification of solids

Solid materials can be classified in structural terms into three distinct categories: cristalline,
fractal and amorphous.

• Crystals are ordered solids. Their high symmetrical structure is characterized by
their translational periodicity. Identical unit cells, containing one or more atoms,
are stacked in space to form the (three-dimensional) crystal lattice.

• Fractal structures are characterized by their detailed self-similarity at every length
scale(Fig.1). Well known natural fractals are cauliflower and broccoli. Real fractal
solids are for example aerogels, synthetic porous materials with very low density.

Figure 1: Sierpinski triangle [Ell00]

• Amorphous materials form a third general class of solids which don’t exhibit
neither the long range order like crystals nor the self-similarity of the fractals.
Therefore they are also called disordered solids. However this does not mean a
full absence of structure. In many cases, in particular for materials with predomi-
nantly covalent bonds, a short range order, characterized by coordination number,
length and angle of the chemical bonds between the atoms, is well defined with
only relative small statistical fluctuations. The resulting structure for a covalently
bonded amorphous solid is called continuous random network (Fig.2a). Finally a
non-crystalline material with a glass transition between the solid and liquid states
is defined as glass.

The term glass usually denotes transparent and fragile materials. In scientific language
this term includes a vast number of disordered materials thus it is more difficult to give
an exact definition. Glass is essentially a non-crystalline solid obtained by cooling down
a liquid but there are also other methods to realize it. Please note however that the
term glass is also used as a synonym for a state of disorder. In fact we speak of spin
glass to describe a magnetically disordered structure. In Fig.2 some types of disorder
are shown.
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Figure 2: Types of disorder [Fon15]

2.1.3 Viscosity

The viscosity is a measure of the resistance of a fluid to gradually deform under a shear
or tensile stress. The bulk viscosity describes the dissipative response of a system to a
compression and plays a role in presence of rapid stress variation due e.g. to a sound
or shock wave, while the shear (dynamic) viscosity originates from the friction forces
between adjacent layers moving with different velocities.

Figure 3: Laminar shear of fluid between two plates [Wik08]

If we decompose a force F acting on the surface S in its normal Fn and tangential Ft
components respectively to S we can define the pressure (tension)

p =
dFn
dS

(1)

and the shear stress

τ =
dFt
dS

. (2)

The tangential force required to move a plate over a liquid surface with a constant
velocity is equal to the friction resistance of the liquid. The fluid particles adjacent to
the plate move with the same velocity whereas those on the ground don’t move at all.
Thus the difference of the velocities between two adjacent liquid layers at a distance dy
is expressed by

v(y + dy)− v(y) =
1

η

Ft
S
dy =

1

η
τdy (3)
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and the viscosity is then defined as

η =
τ

∇v
. (4)

Its unit is the Poise [gcm−1s−1].

2.1.4 Vitrification

Many materials, when melting, became liquids with low viscosity (∼ 10−2 Poise). Such
liquids crystallize rapidly when cooled below the melting point even at higher cooling
rates. There are also substances with much higher viscosity in the liquid phase (∼
106 Poise). Those liquids, if kept just below their melting point, will tend to slowly
crystallize because the crystalline phase is from the thermodynamic point of view more
stable than the supercooled liquid. If, instead, the liquid is cooled quickly enough the
crystallization can be totally avoided because the viscosity increases gradually up to
that of a solid (∼ 1012 Poise). The continuous passage from a liquid to a solid suggests
however similarities between the structures of both states. In Fig.4 the X-ray diffraction

Figure 4: X-ray diffraction of silica glass(a) and cristobalite(b) [Zar82]

pattern of silica glass and its corresponding crystal cristobalite are shown. The few
large blurred rings in (a) confirm the disordered structure of the glass whereas the
numerous discrete thin lines in (b) are typical for the long-range order of polycrystalline
substances.

The ability of a material to form a glass depends not only on the chemical composition
but also on the cooling rate. Some substances cannot vitrify if they are not cooled
sufficiently fast. For example some metal alloys need a cooling rate in the order of
106K/s to became glassy whereas others such as B2O3 cannot easily crystallize. The
volume and mass are also important parameters for the vitrification.

Glasses can be formed not only by cooling of liquids but also from the gas or crystalline
phase. The condensation of vapour on a wall at sufficiently low temperature can strongly
reduce the mobility of the deposited atoms and lead to the formation of a disordered
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structure. On the other hand it is also possible to obtain an amorphous solid by destroy-
ing the crystalline order. The radiation of α-particles or fast neutrons on a crystal causes
defects in the crystalline lattice by displacements of the atoms that can, accumulating,
lead to amorphisation. The effects of prolonged mechanical action may progressively
destruct the crystalline order as well. Similar effects can be quickly obtained by the
brutal impact of a shock wave (by bomb blast e.g.).

2.1.5 Vitreous state

The definition of the glassy state could be of pure operational type: Glass is a disordered
solid obtained by cooling of liquid, but we would exclude materials formed in other ways as
mentioned in the previous section. Another definition of structural type could include all
disordered solids implying that glass and non-crystalline, amorphous solid are synonyms,
but it wouldn’t be satisfactory. Some non-crystalline materials remain disordered by
reversible temperature variation but show changes in their physical properties. Other
disordered substances like Si or Ge crystallize. We use the phenomenon of the glass
transition to differentiate them. Thus we can define the glassy state as a non-crystalline
solid that has a glass transition.

Figure 5: Dependence on the temperature of the volume(enthalpy)(a) and the expansion
coefficient(heat capacity)(b) [Zar82]

The classical way to obtain a glass is by rapidly quenching of a liquid to avoid the
crystallization. The continuous growth of the viscosity with decreasing temperature
leads to solidification. To better understand this process it is convenient to follow the
behaviour of some thermodynamic parameter such as the volume as a function of the
temperature in Fig.5. When the liquid approaches the melting point Tm, two events may
occur, either it crystallizes and causes a discontinuity in the volume variation ∆Vm (in
general a contraction) or the volume continues to change with the same slope crossing
Tm, in that case we speak of a supercooled liquid. In the first case the crystallized solid
continues to contract by cooling with a linear slope smaller than that in the liquid phase.
In the second case the supercooled liquid contracts with the same coefficient as before
but after a certain temperature Tg the slope decreases abruptly approaching that of the
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crystal. Tg is the temperature of the glass transition at which the viscosity becomes
very large of the order of 1013 poise. In Fig.5b the derivative of the volume is shown as
function of the temperature.

The trend of the volume-temperature curve can be explained by the mechanism of the
viscous relaxation. As long as the system is in the supercooled liquid domain it is
able to instantly modify its molecular configuration by rotations and translations of its
molecules and to achieve a quasi-equilibrium at the various temperatures. The rate
of such structural modifications depends on temperature and decreases strongly with
it. When the rate of the configuration variation becomes of the same order as the
cooling rate, the system is no more able to follow the variation of the external conditions
and a deviation in the curve slope is observed at Tg where it occurs. Because the
structural evolution below Tg is not in the quasi-equilibrium we do not speak any more
of supercooled liquid but use the term glass.

Figure 6: Influence of the cooling rate(U1 < U2 < U3) on the glass transition [Zar82]

As shown in Fig.6 the exact position of the transition point Tg is not unique but depends
on the cooling rate. It makes sense, therefore, to speak rather of transition range. A
slower cooling tends to shift Tg to lower temperatures thus leading to the important
conclusion that the physical properties of the glass depend on its thermal history.

The thermodynamic parameters temperature and pressure are not sufficient to define the
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vitreous state, because of its non-equilibrium conditions, therefore we need an additional
one to characterize the configuration of the system. A widely used parameter is the
fictive temperature Tf introduced by Tool(1946). A glass has the fictive temperature
Tf if its configuration corresponds to that in its ”liquid equilibrium” at this temperature.
For a supercooled liquid Tf is simply its current temperature whereas for a glass Tf = Tg
as in Fig.6. Reheating a glass to another temperature in the glass transition range it
will tend to achieve the equilibrium changing its structural configuration and thus its
fictive temperature.

2.1.6 Thermodynamics of the glass system

The dependence of the glass transition on temperature requires the consideration of
some thermodynamic variables such as enthalpy, entropy and heat capacity.

• The enthalpy of a system is defined by

H = E + PV (5)

where E is the internal energy, P the pressure and V the volume of the system.
The enthalpy variation of a reaction at a constant pressure is thus given by

∆H = ∆E + P∆V . (6)

If there are no phase transitions or the volume does not change, the variation of
enthalpy is nothing else than that of the internal energy. Finally ∆H = Q where
Q is the exchanged heat between the system and environment.

• The entropy is an extensive property and commonly understood as the degree
of disorder of the system. It measures the amount of work needed to obtain an
ordered system. For heat exchange between the system and its environment at a
constant temperature the variation of the system’s entropy is given by

∆S =
Q

T
. (7)

• The heat capacity is the amount of heat needed to raise the system’s temperature
by one Kelvin. At constant pressure it is defined as

Cp =

(
∂H

∂T

)
p

. (8)

The volume variation is entirely analogous to that of the enthalpy, thus its derivative Cp
will be equivalent to α (Fig.5). At the melting point Tm the enthalpy jump corresponds
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to the latent heat of fusion Lf . In the vitrification process the curve of Cpl passes
continuously Tm and decreases rapidly at Tg tending to that of the crystal Cps (Fig.7a).

Using eqs. (7) and (8) we can write the entropy variation

dS =
CpdT

T
(9)

and visualize it as the area under Cp which is a function of the temperature. Integrating

Figure 7: (a) Cp vs. log T (b) Kauzmann paradox [Zar82]

both Cpl and Cps in Fig.7a for the liquid-glass transition respectively for the crystallized
solid we can calculate the entropy difference between crystalline solid and supercooled
liquid

∆S =
Lf
Tm
−
∫ Tm

0

(Cpl − Cps)
dT

T
(10)

where
Lf
Tm

is the entropy variation given by the latent heat of fusion Lf at the melting
point Tm. The experience shows that this difference is not zero thus the glass have an
excess of entropy compared to the crystal.

Fig.7b shows ∆S as a function of temperature. During the cooling the system tries to
reduce ∆S but it is blocked in the vicinity of Tg. If we extrapolate the curve of ∆S it will
cut the T-axis at TK , the Kauzmann temperature, where the entropy of the supercooled
liquid becomes equal to that of the crystal (∆S = 0). This leads to the paradox that
below TK the supercooled liquid would have lower entropy than that of the crystal thus
at the absolute zero the entropy would become even negative in contradiction to the
third law of the thermodynamics. To eliminate this problem we have to introduce TK
as the thermodynamic limit for the glass transition.

2.1.7 Fragility

The viscosity of a supercooled liquid increases very fast below the melting temperature
and achieves such high values that the system can be considered practically as solid.
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Conventionally Tg is defined as the temperature at which the viscosity η = 1013poise.
Experimentally it has been shown that in many cases the viscosity in the vicinity of Tg
follows the Vogel-Fulcher law

η(T ) = Ae
B

T−T0 (11)

where the parameters A,B and T0 depending on the considered system; when T0 = 0
it has the so called Arrhenius behaviour. Referring to the dependence of the viscosity
on temperature we distinguish two types of glass: strong and fragile. In strong glasses
the viscosity varies essentially in an Arrhenius manner as a function of T−1, whereas in
fragile glasses it significantly deviates from this trend(Fig.8).

Figure 8: Arrhenius plot of the viscosity in strong and fragile glasses [Deb01]

The slope of the viscosity curve close to Tg defines the fragility index:

m =
d log10 η(T )

d(Tg/T )

∣∣∣∣
T=Tg

. (12)

Its values varies from ∼ 10 in strong glasses up to about 150 for fragile systems. Notice
please that the fragility is a dimensionless quantity defined by the common logarithm
providing thus more convenient scaling of the y-axis.

2.1.8 Viscoelastic relaxation

The response of a glass system to a mechanical stress depends on the stress duration
and on the temperature of the system.
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At sufficiently low temperatures the glass acts as a totally elastic solid following Hooke’s
law that establishes a proportionality between the external stress and the elastic strain.
In Fig.9a the applied tangential force F on the surface S of a body with length L causes

Figure 9: (a)elastic strain (b)viscous creep [Fon15]

the elastic shear deformation
d

L
= tan γe ≈ γe (13)

where γ is small enough to satisfy Hooke’s law

τ =
F

S
= Gγe (14)

with the elasticity constant G. The elastic deformation is reversible i.e. the system
recovers completely its initial form after the external force is removed.

At temperatures above the transition range the system acts as a viscous Newtonian fluid
as discussed in 2.1.4. The shear stress is proportional to the velocity gradient (Fig.9b)

τ = η
dv

dx
= η

dγv
dt

(15)

where we used in the second identity

dv

dx
=

d

dx

(
dy

dt

)
=

d

dt

(
dy

dx

)
=
dγv
dt

.

In contrast to the elastic case the viscous deformation is permanent i.e. it is irre-
versible.

In the vicinity of the glass transition the system has the so called viscoelastic behaviour
which can be explained applying the Maxwell model. In presence of a constant external
stress the initially pure elastic strain is followed by the gradually viscous deformation of
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the system. The total strain is then simply given by the sum of both distinct deforma-
tions

γtot = γe + γv =
τ

G
+
τ

η
t . (16)

The relative contributions of the elastic and viscous components can be expressed by
the time needed for the viscous deformation to equal the elastic strain

τ

G
=
τ

η
tr .

Thus the so called relaxation time is defined by

tr =
η

G
. (17)

The rapid quench of a liquid below its Tg causes microscopical internal tensions in the
material. Those can be removed by reheating the system and maintaining it sufficiently
long at temperatures near the glass transition. This relaxation process is essentially the
conversion of the initially elastic strain into the permanent viscous deformation. Using
eqs. (15) and (16) under the constraint that the total deformation γtot of the system is
constant we obtain

0 =
dγtot
dt

=
dγe
dt

+
dγv
dt

=
1

G

dτ

dt
+
τ

η

The solution of this equation gives a simple qualitative formulation of the relaxation
process

τ = τ0e
−G
η
t = τ0e

− t
tr . (18)

Relaxation processes are in general more complicated due to retarded elasticity caused
by imperfections in the structure or due to variation of the viscosity with time. In many
experimental applications it is thus necessary to adjust empirically the above relation.
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2.2 Dynamic light scattering

2.2.1 Introduction

Electromagnetic radiation is one of the most important experimental tools that can
provide, depending on the wavelength, detailed information about complex structures
and dynamics of matter. Different techniques like X-ray diffraction, Raman or absorption
spectroscopy have been developed to examine the translational, rotational, vibrational
and electronic degrees of freedom as well as the composition of solids and biological
macromolecules. On the following we will treat the characteristics of light scattered
from rotational and translational degrees of freedom known as Rayleigh scattering.

When light impinges on matter the electric field induces oscillations of the constituent
charged particles such as electrons, ions or dipole molecules which subsequently radiate
(scatter) the absorbed light acting as secondary sources. The frequency variation, the
angular distribution, the polarization and the intensity of the scattered light gives then
information about molecular size, shape and interaction in the scattering medium.

In a light-scattering experiment a monochromatic laser beam is focussed on a sample and
its scattered light is registered from a detector at angle θ with respect to the transmission
direction (Fig.10). The intersection between transmitted and scattered beam defines

Figure 10: Scheme of a scattering experiment [BP76]

the illuminated or scattering volume. In an idealized model the incident light is a plane
electromagnetic wave

Ei(r, t) = niE0e
i(kir−ωit) (19)
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of frequency ωi, polarisation ni, amplitude E0 and wave vector ki. The constituent
charges of the molecules in the illuminated volume are accelerated by the incident field
and radiate light according to classical electrodynamics. The scattered light registered
from the detector at a given instant is the superposition of the radiated fields from all
charges in the scattering volume thus it depends on their exact positions. However, the
charges are permanently in thermal motion so that the registered field at the detector
will randomly vary and will look like a noise pattern. Therefore we will need some
concepts from the noise theory and stochastic processes to extract information.

2.2.2 Fluctuations and time correlation

In light scattering experiments the incident field is sufficiently weak to assume a linear
response of the system so that its dynamical variables can be completely described in
terms of time correlation functions.

We consider a property A that depends on the positions and momenta of all molecules in
the system such as the pressure in a gas closed in a container. The particles are randomly
moving around and are hitting against the container’s walls. The resulting force acting
on the walls at a given instant will depend on the momentum transferred by the molecules
and will fluctuate with time. Hence the exact instantaneous pressure defined as force

surface

will fluctuate in time too. It is then reasonable to average over sufficiently long time T
compared to the period of the fluctuations

Ā(t0, T ) =
1

T

∫ t0+T

t0

dtA(t) (20)

where t0 is the initial time. In the ideal case A should be averaged over an infinite time

〈A〉 = lim
T→∞

1

T

∫ T

0

dtA(t) (21)

to obtain a time independent mean value. A property with an average that does not
depend on the initial value is called stationary property.

The noise signal A in Fig.11 can in general have different values at times t and t+ τ

A(t) 6= A(t+ τ) .

When τ is very small compared to the fluctuation period, A(t+ τ) will be very close to
A(t) so that we can say they are correlated. A measure of this correlation is given by
the autocorrelation function of A

〈A(0)A(τ)〉 = lim
T→∞

1

T

∫ T

0

dtA(t)A(t+ τ) (22)

17



Figure 11: Fluctuations of the property A(t) [BP76]

In a real experiment the property A will be measured for small discrete time intervals
∆t so that the equations (21) and (22) can be respectively approximated by the sums

〈A〉 = lim
N→∞

1

N

N∑
j=1

Aj (23)

〈A(0)A(τ)〉 = lim
N→∞

1

N

N∑
j=1

AjAj+n (24)

where we substituted t = j∆t, τ = n∆t and T = N∆t.

Without loss of generality we can assume 〈A〉 = 0 and evaluate the dependence on time
of the autocorrelation function. Since the fluctuations are around zero some terms in
the sum (24) will be negative. Consider first the case τ = 0. All terms in

N∑
j=1

AjAj =
N∑
j=1

A2
j

will be positive and the total value will become large. For τ > 0 there will be some
cancellations due to the negative contributions implying that

〈A(0)2〉 ≥ 〈A(0)A(τ)〉 . (25)

This indicates that the autocorrelation function either remains constant for all times τ
i.e. it is a conserved quantity or decays from its initial value which is the maximum.
For large τ , compared to the characteristic time of the fluctuations, A(t) and A(t + τ)
are expected to become totally uncorrelated

lim
τ→∞
〈A(0)A(τ)〉 = 〈A(0)〉〈A(τ)〉 = 〈A〉2 (26)

so that the autocorrelation function of a non periodic property A decays from 〈A2〉 to
〈A〉2 as shown in Fig.12.
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Figure 12: Decay of the autocorrelation function 〈A(0)A(τ)〉 [BP76]

In many applications the autocorrelation function decays like a single exponential

〈A(0)A(τ)〉 = 〈A〉2 +
[
〈A2〉 − 〈A〉2

]
e−

τ
τr (27)

where τr is the characteristic decay time of A called correlation time or also relaxation
time.

If we define the instantaneous deviation of A(t) from its mean value

δA(t) ≡ A(t)− 〈A〉 (28)

it is easy to show by substitution in eq.(22) that

〈δA(0)δA(τ)〉 = 〈A(0)A(τ)〉 − 〈A〉2 (29)

and
〈δA2〉 = 〈A2〉 − 〈A〉2 . (30)

From eqs. (27),(29) and (30) it follows

〈δA(0)δA(τ)〉 = 〈δA2〉e−
τ
τr . (31)

Not all autocorrelation functions decay exponentially. The correlation time is thus de-
fined as

τc ≡
∫ ∞
0

dτ
〈δA(0)δA(τ)〉
〈δA2〉

. (32)

where τc = τr for the exponential case. In general the correlation time is some compli-
cated function of many relaxation processes contributing to the decay of δA.
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In real systems (glasses e.g.) the relaxation time τr can become so large that it will
be impossible to perform a measurement long enough for a satisfactory time averaged
autocorrelation function. Therefore in systems of many identical particles it will be
reasonable to employ the ensemble average. Systems which produce the same results
by averaging over time as well as over (phase) space are called ergodic systems.

The instantaneous state of a mechanical system is completely specified by its generalized
coordinates (q1, ..., qf ) and momenta (p1, ..., pf ) given as a point Γt ≡ [q(t),p(t)] in the
2f -dimensional phase space at any time t. The time evolution is then represented as a
trajectory in the phase space which, for ergodic systems and for t→∞, will completely
explore the phase space volume. Hence a mechanical property A of the system can
be defined as a function of its generalized coordinates A(t) ≡ A(Γt) and its ensemble-
averaged autocorrelation function is then

〈A(0)A(t)〉 ≡
∫
dΓ0ρ(Γ0)A(Γ0)A(Γt) (33)

where the product A(Γ0)A(Γt) depends on t and ρ(Γ0)dΓ0 gives the probability to find
the system in the state Γ0.

2.2.3 Spectral density

In scattering experiments the spectral density or power spectrum is the measured quan-
tity defined as the time Fourier transform of the autocorrelation function

IA(ω) ≡ 1

2π

∫ +∞

−∞
dte−iωt〈A∗(0)A(t)〉 . (34)

Using the inverse Fourier transform

〈A∗(0)A(t)〉 =

∫ +∞

−∞
dωeiωtIA(ω)

we find for t = 0 the mean-square value of A

〈|A|2〉 =

∫ +∞

−∞
dωIA(ω) (35)

where dωIA(ω) can be interpreted as the amount of |A|2 in the frequency interval (ω, ω+
dω).

2.2.4 Light scattering

We consider a plane wave
Ei(r, t) = niE0e

i(kir−ωit) (36)

20



which passes through a transparent, non-magnetic and non-conducting medium with
refractive index n =

√
ε0. The incident field will induce oscillations in the charge density

thus the local dielectric constant will fluctuate too. From the Maxwell equations an
expression can be derived of the scattered field in terms of the dielectric fluctuation

Es(R, t) =
−k2fE0

4πRε0
ei(kfR−ωit)δεif (q, t) (37)

where kf is the scattered wave number, ωi the initial field frequency and R the distance
from the scattering volume[BP76]. The dielectric fluctuation tensor

δεif (q, t) ≡ nf · δε(q, t) · ni (38)

depends on the polarizations of the incident and scattered field ni and nf respectively,
as well as on the exchanged momentum q = ki − kf . Supposing that |ki| = |kf | we can
express the magnitude of q by the Bragg condition

|ki − kf | = q =
4πn

λ
sin

θ

2
(39)

where θ is the scattering angle between ki and kf as shown in Fig.13.

Figure 13: Scattering geometry [BP76]

The autocorrelation function of the scattered electric field is thus given by

〈E∗s (R, 0)Es(R, t)〉 =
k4f |E0|2

16π2R2ε20
〈δεif (q, 0)δεif (q, t)〉e−iωit (40)

and the spectral density by its Fourier transform

Iif (q, ωf , R) =

[
I0k

4
f

16π2R2ε20

]
1

2π

∫ +∞

−∞
dt〈δεif (q, 0)δεif (q, t)〉ei(ωf−ωi)t (41)
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where we substituted I0 ≡ |E0|2. Note that the power spectrum depends on the fre-
quency change ω = ωi − ωf . The dependence on k4 explains why longer waves are less
scattered and the dependence on R−2 represents the expected attenuation for a spheri-
cal wave. If however δε(q, t) does not depend on time the integral in (41) would yield
δ(ωi − ωf ) and there would be no frequency shift. Scattering can occur from ”frozen”
fluctuations but incident and scattered wave would have the same frequency (Rayleigh
scattering).

The Fourier transform of the autocorrelation function of the dielectric fluctuations is
then

Iεif (q, ω) =
1

2π

∫ +∞

−∞
dt〈δε∗if (q, 0)δεif (q, t)〉e−iωt . (42)

and it is proportional to the scattered intensity Iif (q, ωf , R) with the proportionality
constant

A =
I0k

4
f

16π2R2ε20
.

Analogous results can be derived considering the induced dipole moments of the single
molecules in the scattering medium

µj(t) = αj · Ei(t) . (43)

We assume that the molecules are electronically weakly coupled i.e. not much disturbed
by their neighbours and we neglect any collision effects. The scattered field can be then
derived from the theory of the dipole radiation and will be thus proportional to the sum
of the contributions from each molecule in the illuminated volume

Es(t) ∼
∑
j

αjif (t)e
iq·rj(t) (44)

where rj(t) is the translation of the j-th molecule and the time dependent polarizability
tensor

αjif (t) = nf ·α(t) · ni (45)

expresses its rotations and vibrations relative to the incident and scattered field polar-
izations. Due to the relation ε = 1 + 4πα thus δε = 4πδα the spectral density will be
proportional to

Iαif (q, ω) =
1

2π

∫ +∞

−∞
dt〈δα∗if (q, 0)δαif (q, t)〉e−iωt (46)

where

δαif (q, t) =
N∑
j

αjif (t)e
iq·r(t) (47)

is the spatial Fourier component of the polarizability density

δαif (r, t) =
N∑
j

αjif (t)δ(r− rj(t)) . (48)
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2.2.5 Optical mixing

The output of the detector, usually a photomultiplier tube, is proportional to the inten-
sity of the scattered light (or number of photons) thus to the squared electromagnetic
field i(t) ∼ |E(t)|2. The output current i(t) is then passed into a computer (or correla-
tor), which calculate the autocorrelation function

〈i(0)i(t)〉 = B〈|E(0)|2 |E(t)|2〉 (49)

where B is a proportionality constant. We distinguish two methods of detecting or
optical mixing :

• In the homodyne method only the scattered light impinges on the detector and
we define the homodyne autocorrelation function of the scattered intensity

I2(t) ≡ 〈|Es(0)|2 |Es(t)|2〉 . (50)

• In the heterodyne method a local oscillator, usually a small portion of the unscat-
tered laser beam, is mixed with the scattered light. The autocorrelation function
of the output becomes

〈i(0)i(t)〉 = B〈|ELO(t) + Es(t)|2 |ELO(0) + Es(0)|2〉 . (51)

Assuming that the fluctuations of ELO(t) are negligible and both ELO(t) and Es(t)
are statistically independent, eq.(51) reduces to [BP76]

〈i(0)i(t)〉 ∼= B
[
ILO

2 + 2ILOReI1(t)
]

(52)

where ILO = 〈|ELO|2〉 and ReI1(t) the real part of the heterodyne autocorrelation
function

I1(t) ≡ 〈E∗s (0)Es(t)〉 . (53)

Under certain conditions the homodyne correlation function I2(t) can be expressed in
terms of I1(t). In the Gaussian approximation the illuminated volume is considered as
divided in many small subregions so that the scattered field can be expressed as the sum
of independent Gauss-distributed random variables

Es =
∑
n

E(n)
s (54)

where E
(n)
s is the scattered field from the n-th subregion. In the Gaussian distribution

all higher moments are related to the first two moments thus it can be shown that
the fourth moment I2(t) is related to the second moment I1(t) trough the expression
[BP76]

I2(t) = |I1(0)|2 + |I1(t)|2 . (55)
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Important for this approximation is that all subregions are statistically independent and
sufficiently large to satisfy the central limit theorem.

In general the homodyne autocorrelation function contains more information than the
heterodyne one, because additional terms can appear.

2.2.6 Autocorrelation function for particle diffusion

We consider a simplified system of independent identical spherical particles as an ap-
proximation for dilute suspensions of macromolecules e.g. According to eq.(45) the
polarizability tensor of the particles is given by

αjif (t) = αnf · ni (56)

where α is the constant isotropic polarizability of the particle j. Its fluctuations follow
from eq.(47)

δαif (q, t) = αnf · ni
N∑
j

eiq·r(t) (57)

where the sum goes over all particles in the scattering volume. The function

F1(q, t) = 〈ψ∗(q, t)ψ(q, t)〉 (58)

with

ψ(q, t) =
N∑
j

eiq·r(t)

is proportional to the heterodyne autocorrelation function in eq.(53). Assuming that
the particles move independently, thus have independent positions rj(t), F1 simplifies to
the self-correlation function

F1(q, t) =

〈
N∑
j=1

bj(0)bj(t)e
iq·[rj(t)−rj(0)]

〉
(59)

where

bj(t) =

{
1 j ∈ V
0 j /∈ V

counts the particles remaining in the scattering volume V at time t. In typical light scat-
tering experiments the characteristic time τv needed by a particle to leave the scattering
volume V is given by

τv =
L2

D
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with D the diffusion coefficient of the system and L ∼ 0.01cm the typical length scale of
the illuminated volume. In contrast the particle displacements [rj(t)−rj(0)] contributing
to the sum in eq.(59) are of the order of q ∼ 105cm−1 with characteristic times

τq =
1

q2D
.

Comparing both time scales
τv
τq

= (qL)2 ∼ 106

we see that bj(0)bj(t) varies much slower than exp (iq · [rj(t)− rj(0)]) and we can ap-
proximate

bj(0)bj(t) ' bj(0)bj(0) = bj(0)

where the last identity comes from the fact that bj(0) is either 0 or 1. We can thus
write

F1(q, t) = 〈N〉Fs(q, t)
where

Fs(q, t) ≡ 〈eiq·[rj(t)−rj(0)]〉 (60)

is the so called self-intermediate scattering function. Its spatial Fourier transform is the
van Hove function

G(R, t) = 〈δ(R− [rj(t)− rj(0)])〉
which describes the probability that the particle moves over distance R in time t and
can be regarded as a solution of the diffusion equation

∂

∂t
G(R, t) = D∇2G(R, t) . (61)

The spatial Fourier transform of this equation

∂

∂t
Fs(q, t) = −q2DFs(q, t) (62)

has the solution
Fs(q, t) = e−q

2Dt (63)

with the relaxation time τq = (q2D)−1 as introduced above. It follows that the hetero-
dyne autocorrelation function is given by the exponentially decaying function

F1(q, t) = 〈N〉e−q2Dt (64)

and in the Gaussian approximation we obtain according to eq.(55) the homodyne auto-
correlation function

F2(q, t) = 〈N〉2 + 〈N〉2e−2q2Dt . (65)

Substituting the Einstein relation

D =
kBT

6πηa

for the diffusion coefficient, we can e.g. measure the radius a of the diffusing particles if
we know the viscosity η at temperature T of the solvent.
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2.2.7 Coherence area

The concept of coherence area is central in optical mixing experiments. When light
impinges on a screen the produced diffraction pattern, i.e. the intensity maxima and
minima, depends on the extent L of the light source (Fig.14). Since each point of the
source radiates incoherently, i.e. with a random phase, the intensity at point A on the
screen will result as a superposition of the waves from all points of the source. If point
B is very close to A, the intensity will be almost identical to that in A thus we could say
both signals are correlated or coherent to each other. The distance at which the space
correlation function 〈E(A)E(B)〉 of the signals at A and B differs significantly from zero
is formally defined as coherence distance.

Figure 14: Coherence area [BP76]

It may be shown by computing of 〈E(A)E(B)〉 that the distance over which the signals
at A and B are correlated is approximately

lc ≈
λ

α
(66)

where α is the resulting angle from the extent of the source on the screen and λ the wave-
length of the light [BP76]. If we observe a two dimensional flat screen the area around
the point A at which the signals are spatially correlated is defined as the coherence
area Acoh. An estimate of Acoh is given by

Acoh ≈
λ2

Ω
(67)

where Ω is the solid angle of the source subtended at the screen.
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3 Experiment

3.1 Sample preparation

Diboron trioxide is a typical glass forming material consisting mostly of planar BO3-
triangles, which build a disordered covalent bonded network. Pure B2O3 crystallizes
very hardly even at the crystal melting temperature (450◦C for trigonal B2O3) due to
its high viscosity. Under normal conditions it adsorbs water molecules from the air
humidity forming in a nontransparent white cover on its surface. To avoid this problem
we melted directly the granular boron oxide of 99% purity produced by Sigma-Aldrich
in cylindrical silica glass tubes 7mm in diameter and 1mm in thickness. Fused silica has
similar optical properties as B2O3 but higher glass transition temperature (∼ 1200◦C)
allowing thus to prepare transparent airtight samples.

Because of its hygroscopy the samples have been first dried for about 2 hours at 300◦C
evaporating in this way the adsorbed water molecules from the surface. After that they
were slowly heated up to 900◦C with a rate of 5◦C/min to avoid any stress damages of the
silica tube. The samples were then kept for several hours at 900◦C to get rid of eventual
bubbles and any remaining water (or hydroxyl ion) content. The sample A was held at
900◦C for 12 hours, the samples B and C for 48 hours respectively. Subsequently the
samples were slowly cooled down to 300◦C with a rate of 5◦C/min and then immediately
placed in the furnace, where the measurements were performed at different temperatures
near the glass transition.

Care had to be taken when cooling below the glass transition (< 250◦C). Once solidified
the samples could not be reheated due to the very different thermal expansion coefficients
of B2O3 (∼ 10−4K−1 [Bot07]) and that of the enclosing silica glass (∼ 10−6K−1 [Whi73]).
For this reason the measurements were performed on cooling down the sample in steps of
5◦C or 10◦C. Important is also the remaining water content which reduces significantly
the glass transition temperature Tg even if present at few percent level (< 5%) as reported
by Ramos et al. [Ram96]

3.2 Setup

For the measurements a coherent green laser light has been used of the wavelength
λ = 532nm and power P = 240mW . To avoid oversaturation of the detector the beam
has first been filtered to ∼ 3% of the primary intensity as reported in Fig.15, then
focused on the sample by a lens of focal length f = 25cm to a focal spot of ≈ 100µm.
The sample was placed in a furnace with a temperature control to within 0.1◦C. The
furnace has four apertures at angles of 90◦ for the incoming, transmitted and at 90◦
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scattered beams. The scattered light was first selected by an aperture of 6 mm width,
which was calculated to obtain speckles of similar size as the CCD-pixel size. The
scattering volume of the sample is imaged through a lens of focal length f = 15cm on
the CCD with a magnification b

g
= 1 according to the thin lens formula

1

f
=

1

g
+

1

b

with the distances from the lens b = g = 30cm of the image and of the sample, respec-
tively. In order to reduce any undesirable effects of external stray light the CCD-camera
was enclosed in a dark box. All measures were performed in a dark room.

Figure 15: Experimental setup

The pixels of the CCD camera have the width of 9µm and the coherence area (speckle
size) is given by

Acoh ≈ π

(
λD

2d

)2

where λ is the wavelength and D the distance from the sample to the pinhole of diameter
d. The latter formula is derived by the geometry of our setup as shown schematically
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in Fig.16. The speckle pattern on the CCD appears from the ”source” of extent L on
the lens over the distance b so that the speckle size or the diameter of a single coherence
area results to

l ≈ λ

α
≈ λL

b
=
λL

g
=
λD

d

as introduced in section 2.2.7. Assuming the speckles are circles-like we obtain the
coherence area by

Acoh = πr2

with

r =
l

2
=
λD

2d
.

Figure 16: Geometry of the speckle imaging

3.3 Measurement and evaluation

The measurements were performed on three samples at different temperatures mostly
made with decreasing steps of 5◦C or 10◦C. After changing the temperature the system
needed about 15min to achieve its thermal equilibrium before beginning with the mea-
surements. The used CCD-camera has a recording rate of about 1 frame every second
so that we could not measure relaxation times less than few seconds at temperatures far
above the glass transition. At lower temperatures instead the relaxation time becomes
very large so that it was necessary to perform long measurements to obtain satisfac-
tory statistics. However the length of the measurements was limited to within one day
and the longest one (∼ 20000 frames) became even a challenge for computation of the
large amount of data loaded at once. After each measurement the dark counts of the
CCD-camera were recorded by covering the CCD aperture for about 20 frames.
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3.3.1 Intensity distribution

In Fig.17 a typical speckle pattern is reported for an arbitrary frame recorded by the
CCD. The beam enters from the left of the image and exits on the right side. It is
evident that the speckle intensities are not homogeneous, i.e. the intensity decreases
from the image middle to the borders below and above, where the speckles are almost
no more visible and the signal decreases gradually to the dark noise. In order to keep
the amount of data to a manageable level we cut all ”dark” pixels, i.e. those of low
intensity, as well as those strongly illuminated by reflections from the sample sides or its
brass holder. However the beam profile and the stray light have significant contributions
to the autocorrelation function which we will discuss later.

Figure 17: Typical intensity distribution of a frame recorded by the CCD-camera

The size of the image has a length of ∼ 500 pixels that corresponds to ∼ 4,5mm of the
visible scattered beam length. That means that about 1mm on each side of the sample
with diameter 7mm is cut from the image since the intensity scattered by the sample
sides is dominated by stray light. The width of 25 pixels(= 225µm) is close to the focal
spot of ≈ 100µm that explains also the gradually decreasing beam intensity profile.

The intensity distribution is described by the Rayleigh statistics with the exponential
probability density

P (I) =
1

〈I〉
exp

(
− I

〈I〉

)
(68)

where 〈I〉 is the mean intensity [DC15].

Fig.18 represents a histogram of the pixel intensities computed over all 1461 frames from
a measurement made at T = 280◦C. The fitted exponential function coincides very well
with the measured data for higher intensities. The most probable value of the Rayleigh
distribution should be I = 0 that we could not observe due to the always present
noise background. Consequently for low intensities the measured intensity distribution
deviates significantly from the exponential shape and is additionally somewhat shifted
toward higher intensities. The latter explains also the difference of both fit parameters
a = (9.13 ± 0.05) · 10−4 and b = (−4.55 ± 0.01) · 10−4 whose absolute values should be
equal to the reciprocal mean intensity

ã = −b =
1

〈I〉
.

In the picture is also shown the vertical straight line which cuts the fitted exponential
curve at y = 4.559 · 10−4 ≈ |b| where the ordinate should be shifted accordingly to
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eq.(68). The red line traverses the data distribution near its maximum corresponding to
the most probable measured intensities suggesting thus an estimate of the total intensity
background. Due to the normalization of both data distribution and fitted exponential
function by definition, the area of the data on the left from the red line is equal to the
difference between the areas under the green fit and the data on the right side.

Figure 18: Probability distribution of the pixel intensities

The sequence of all frames from one measurement can be converted to a movie visualizing
in this way the dynamic of the speckle pattern. At high temperatures above Tg the
speckles move very fast, appearing and disappearing with the characteristic rate given
by the relaxation time, whereas at low temperatures below Tg they move very slow
and the pattern seems to be quasi static. The probability distribution of the intensity
at different times has the same shape as in Fig.18 and the intensity histogram of an
arbitrary pixel over the whole measurement time will be perfectly fitted by the same
exponential function (with the same parameters) as above.

The time evolution of the intensity recorded by an arbitrary pixel at T = 280◦C is shown
in Fig.19. The intensity peaks correspond to the appearing speckles and their widths
to the relaxation time τ ≈ 3s at this temperature. The red dashed line indicates the
intensity background at ≈ 1500 counts as estimated in Fig.18 and the magenta dotted
line shows the mean intensity of the signal. The reciprocal difference between signal
mean and background intensity

(3700− 1500)−1 ≈ 4.5 · 10−4

corresponds approximately to the fit parameter |b| = (4.55 ± 0.01) · 10−4 from Fig.18.
However the origin of the background intensity is not trivial and was not the aim of this
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Figure 19: Intensity of an arbitrary pixel in time

work. Since it is surely composed of measurable contributions of the electronic noise
and stray light the intensity distribution may also be influenced by the ratio speckle to
pixel size as well as by the beam intensity profile.

3.3.2 Amplitude of the autocorrelation function and non ergodicity factor

We tested two different methods to treat the raw data. In both cases the dark counts
data collected after each measurement were first subtracted in order to reduce the noise
contribution to the CCD and the influence of eventual defected pixels. The autocorre-
lation function is then computed by averaging over time and space where the sequence
of the averaging plays a central role.

By the time averaging method we computed first the time averaged autocorrelation
function of each single pixel then the mean over all pixels

〈Cp(t)〉p =

〈〈
(Ipf − 〈Ip〉f )(I

p
f+t − 〈Ip〉f )

〈Ip〉2f

〉
f

〉
p

(69)

where Ipf is the intensity of the p-th pixel and the f -th frame recorded by the CCD
camera. The brackets express the average over all frames f and all pixels p respectively.
Expanding the expression in the brackets we obtain the Siegert relation

C(t) =
〈If · If+t〉
〈I〉2

− 1 = |g(q, t)|2 . (70)
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In general the self-intermediate scattering function g(q, t) is defined as the time Fourier
transform of the dynamic structure factor S(q, ω) and depends also on the scattering
angle. Because the latter was fixed at 90◦ the very small q-dependence will be further
neglected.

As shown above g(t) is directly proportional to the (heterodyne) autocorrelation function
of the charge (density) fluctuations in the scattering medium and is assumed as the sum
of many single exponential functions, i.e. of many relaxation processes. In the practice
g(t) is empirically approximated by the stretched exponential function

g(t) =
√
C0 · e−(t/τ)

β

. (71)

Consequently the measured autocorrelation function is given by

C(t) = C0 · e−2(t/τ)
β

(72)

where C0, τ and β are the fitting parameters in which we are interested.

The amplitude or contrast C0 gives the initial value of the autocorrelation function and
is related to the so called non ergodicity level f0 of the scattering medium. This has been
studied in detail within the mode-coupling theory. The theory predicts a two step relax-
ation for liquids: the main α and the fast β. Consider a jammed system of hard spheres
such as the molecules in a (supercooled) liquid. The molecules will rattle in the cage
formed by their neighbours and this motion will result in the so called fast β-relaxation
of the autocorrelation function. The β-relaxation is always present even for solids at
very low temperatures and depends strongly on q due to the Debye–Waller—factor
∼ exp(−1

3
q2u2), where u is comparable with the cage extent, since it describes the aver-

age displacement of the molecules from their equilibrium positions. Characteristic times
of various fast relaxations are reported in the range of 10−12s - 10−2s [Sid93].

The slow or main α-relaxation is related to the particle diffusion in liquids, that is when
a molecule escapes from its cage. This depends strongly on the viscosity thus on the
temperature of the liquid. At very low temperatures below Tg the viscosity and the
relaxation time ”diverges” to infinity, so that the glass is stuck in a non equilibrium
state and the autocorrelation function decays to f0, where it remains. In other terms
the non ergodicity level gives the initial value of the α-relaxation.

In our experiment the contrast C0 measures the mean squared intensity which is affected
by two additional factors: an instrumental factor Acoh and a factor related to the stray
light fst so that

C0 = f 2
0Acohfst . (73)

To demonstrate this the autocorrelation functions measured on B2O3 at 270◦C by pho-
tomultiplier and CCD are plotted together in Fig.20. The photomultiplier tube is able
to measure very short relaxation times to the point that the tail of a faster relaxation
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process is also visible in Fig.20. However it measures only one speckle at a time and
longer measurements are more likely to be corrupted by sudden intensity distortions
as when a dust particle crosses the laser beam e.g. On the other hand the CCD mea-
surement is limited by the acquisition rate of 1 frame/s. The two detectors could be
used simultaneously to measure the relaxation time only in a tight range of few seconds
corresponding to temperatures 280−260◦C of B2O3, where in particular the fit function
of the CCD data is less precise due to the rare data points at short times.

Figure 20: Autocorrelation function of boron oxide at 270◦C measured by the photomul-
tiplyer (circles). For comparison the data measured by the CCD (crosses) at
the same temperature are plotted as well.

However both measurements give comparable results regarding τ and β but differ signifi-
cantly in the contrast C0. This can be explained by the different coherence (instrumental)
factors Accd and Apm. The photomultiplier factor could be measured by light scattering
on the standard sample of colloidal polystyrene spheres of diameter 1µm in water and is
given by Apm = 0,82± 0,03. Due to the short time limitation of the CCD its coherence
factor Accd had to be calculated by comparison with the photomultiplier

Accd = Apm ·
Cccd
Cpm

= 0.96± 0.03 (74)

where Cccd and Cpm are the measured contrasts of the CCD and the photomultiplier re-
spectively at the same temperature of 270◦C. This result is reasonable since our speckles
are of size ≈ 4 pixel thus the mean intensity registered by a single pixel correspond
nearly to the real scattered intensity (dark counts are previously subtracted). If instead
the coherence area is smaller than a pixel the mean intensity relative to the constant
background and thus the contrast will be lower.
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Figure 21: Polarization schemes in a scattering geometry [BP76]

The stray light correction factor to the contrast was calculated using the fact that the
stray light has the same polarization as the incident laser beam. In Fig.21 the geometry of
two different polarization schemes in a scattering process is schematically shown with the
wave vectors Ki, Kf and the polarizations ni, nf of the initial and final wave respectively.
If a linearly (vertically) polarized incoming beam is scattered on a disordered scattering
medium the scattered light will have both a polarized and depolarized component. The
scattered light can be separated in two components: EV V the light scattered with the
same polarization as the incoming (vertically polarized) beam and EV H the light with
90◦C rotated polarization. Both components should give the same contrast C0(= 〈I2〉)
of the autocorrelation function. The stray light instead origins mostly from reflections of
the environment or of ”macroscopic” dust particles in the sample and has the polarization
of the incident beam. Consequently it will raise the contribution of IV V and reduce
the contrast of the corresponding autocorrelation. To correct our data an additional
measurement at 270◦C was performed by using a polarization filter crosswise to the
incoming laser polarization. The measured autocorrelation contrast is CV H

0 = 0.65±0.02
so that the stray light factor results

fst =
C0

CV H
0

= 0.65± 0.03

allowing together with Accd to calculate the non ergodicity factor f0.
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3.3.3 Time average

We return to the time averaging method of the autocorrelation function given by

〈Cp(t)〉p =

〈〈
(Ipf − 〈Ip〉f )(I

p
f+t − 〈Ip〉f )

〈Ip〉2f

〉
f

〉
p

.

In Fig.22 the normalized autocorrelation functions Cp(t)/Cp(0) of B2O3 at T = 260◦C
are separately plotted (black curves) for each pixel p.

Figure 22: Normalized autocorrelation functions of B2O3 at T = 260◦C separately com-
puted for each pixel

The green circles represent the mean function 〈Cp(t)/Cp(0)〉p averaged over all pixel for
each time delay t accordingly to eq.(69). The blue curves show the confidence bands
defined by

∆(t) = ±
√

2τ

ttot
[C(0)− C(t)] . (75)

where ttot is the total measurement time. Obviously the uncertainty of C(t = 0) = 〈I2〉
at lag t = 0 equals zero and increases with lag t. It depends also statistically on the total
measurement time in units of the relaxation time τ so that for C(t)→ 0 and C(0) = 1
we obtain the standard error of the time average

∆ = ±
√

2τ

ttot
.

Finally the red curve represents the fitted stretched exponential in a good agreement
with the mean autocorrelation function 〈Cp(t)/Cp(0)〉p. The deviation of the relaxation
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time τ is here estimated by the half of the horizontal distance between the confidence
bands at C(τ) which enclose the most curves as shown in the zoomed rectangle on
Fig.22.

Figure 23: Pixel distribution of the relaxation time τ

This is obviously not the real error of the autocorrelation function that will be later
corrected by the number of speckles, but it gives an overview of how the statistics
influence the accuracy of our results. It corresponds approximately to the standard
deviation of the distribution of τ as represented in Fig.23. On the left picture the
histogram of τ is plotted for all pixels on the y-axis against logarithmic x-axis, where
the mean value and the standard deviation are directly computed from the data. On
the right side the same data is plotted after normalization together with the fitted
logarithmic normal distribution function, where µ and σ are the fit-parameters. The
deviation of about 8 sec corresponds nearly to the shorter horizontal distance of the left
(lower) confidence band from C(τ) in Fig.22 and the logarithmic shape of the distribution
corresponds to the exponential decay of C(t) and its confidence bands.

In an similar way the density distributions of the other two parameters β and C0 are
shown in Fig.24 which appear to be almost normal distributed. In the bottom plots of the
figures the spatial distributions of the corresponding parameter are mapped exhibiting
the spatial independence (homogeneity) of the parameters.

The so far discussed time averaging method delivers good results only if the measurement
is sufficiently long in terms of the relaxation time τ . When in contrast τ increases (e.g.
with decreasing temperature) the statistic becomes worse due to the reduced number
of temporally independent speckles in the same measurement time. The time averaged
intensity will be appreciably up-shifted by the speckle intensities which will remain on
for longer time intervals with respect to the total measurement time. In the limit of a
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Figure 24: Pixel distribution of the contrast C0 and the stretching exponent β

glass at low temperature the quasi-static speckle will fluctuate around its ”maximum”
intensity far above the noise background.

Figure 25: Autocorrelation functions of B2O3 at T = 235◦C for different integration
times

In Fig.25 the autocorrelation functions of B2O3 at T = 235◦C are plotted. The measure-
ment was performed over 12 hours with an acquisition rate of one frame every 11 seconds.
The autocorrelation functions are computed over different integration times (number of
frames) each one corresponding to the half of the previous one. In the bottom plot the
signal of an arbitrary pixel is plotted to better visualize the time domain used for the
average as marked by the coloured rectangles. For the entire measurement time of 3999
frames the mean intensity of the signal is very close to the baseline corresponding to
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the mean noise contribution and the autocorrelation function has the expected shape
converging for large delays to zero. On the contrary for shorter integration times the
data deviates gradually from the real function and the baseline becomes considerably
distorted by the spurious mean intensity.

Figure 26: Dependence of the fit parameter τ on the measurement time t

In Fig.26 the dependence of the fit parameter τ on the integration time ttot is plotted
as computed by the autocorrelation functions in Fig.25. For long measurements τ ap-
proaches asymptotically the real value of the relaxation time τ∞(≈ 22 frames in Fig.25).
For a measurement of about 100 τ∞ it deviates already by ≈ 10%.

3.3.4 Ensemble average

In the ensemble averaging method we simply permute the brackets

C(t) =

〈〈
(Ipf − 〈If〉p)
〈If〉p

·
(Ipf+t − 〈If+t〉p)
〈If+t〉p

〉
p

〉
f

(76)

so that we first compute the ensemble mean of the correlation coefficients 〈I(0)I(t)〉p
then the autocorrelation function averaging over all lags t. Notice please that we first
normalize by the ensemble mean intensity of each frame before computing the autocor-
relation coefficients. In the ergodic hypothesis the ensemble average is equivalent to the
temporal one and independent of the initial time. Substituting the squared time average
in the denominator with the ensemble one over each frame in the correlation product we
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avoid the influence of eventual laser fluctuations or other temporal dependences. More
importantly this method has proved to be more suitable for nonergodic systems or as in
our case for the nonequilibrium states below the glass transition where τ becomes very
large and changes during the measurement.

We consider first the ensemble averaged correlation coefficients

Cf (t) = Cf,f+t =

〈
(Ipf − 〈If〉p)
〈If〉p

·
(Ipf+t − 〈If+t〉p)
〈If+t〉p

〉
p

.

which define the f × f square matrix schematically represented in Fig. 27.

Figure 27: Correlation matrix (bottom) and the corresponding autocorrelation func-
tion(top) averaged along the matrix diagonals (dashed lines)

The pixel averaged squared intensities at equal time for each instant f and lag t = 0 are
clearly visible on the main diagonal (up left to down right) and the correlation function
decays with increasing lag t in the direction of the other diagonal (down left to up right).
Actually the matrix is constructed by extending the upper right triangle that is naturally
defined by positive lags t to a symmetric square matrix. The autocorrelation function
C(t) results by averaging along the secondary diagonals from up left to down right for
each time delay t as indicated by the dashed lines in Fig. 27.

It is evident that with increasing lag t the number of the corresponding elements de-
creases until at last for lag t = N (the total number of frames) we will have only one
element. Thus the statistical error at longer delays will increase and the autocorrelation
curve will fluctuate more and more toward the end. To reduce the influence of such sta-
tistical fluctuations on the fitting function the last 10% of the so constructed correlation
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Figure 28: Correlation matrices from two different pixel regions of the same measurement
labelled by both black and red rectangles on the intensity map in the bottom
image

matrix are excluded in the time averaging and set to zero as a visible reference for the
decay of the matrix elements as shown in Fig.28. In fact the upper right and bottom
left corners are irrelevant for the function shape.

In the bottom of Fig.28 the map of the time averaged pixel intensities is plotted cor-
responding to B2O3 at T = 260◦C. Both rectangles indicate the region over which the
matrices a) and b) are computed. The correlation matrix a) was constructed by av-
eraging over the almost entire pixel region recorded by the CCD except a small area
(> 350) at the right edge where a reflection from the sample walls are visible. The
inhomogeneous distribution of the speckle intensities shifts the ensemble mean intensity
and results in an up-shifted correlation baseline, this is clearly visible also in Fig.28a)
as a strong variation at the corners set to zero. On the contrary the matrix b) was com-
puted over the approximately homogeneous central region indicated by the red (tight)
rectangle. Far from the main diagonal it exhibit the expected correlation fluctuations
around zero and is hardly distinguishable from the corner value.

The autocorrelation functions of both matrices from Fig.28 are plotted in Fig.29 together
with the corresponding fitted exponential functions. The blue squares correspond to the
function from the correlation matrix in Fig.28a) and the green circles to that in Fig.28b).
The fit parameters τ and β does not differ essentially thus both autocorrelation functions
reflect the same dynamic of the sample. However the other two fit parameters the base-
line A and the contrast C0 deviate significantly due to the influence of the beam profile.
Using the time averaged pixel intensity shown in the bottom image of Fig.28 to correct
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Figure 29: Autocorrelation functions of B2O3 at T = 260◦C computed over different
pixel regions. The up-shift of the baseline results from the influence of the
beam profile

the beam profile led to similar deviations of the autocorrelation function as discussed
above by the time averaged method in particular for large relaxation times at temper-
atures below Tg. Therefore the homogeneous central part of the CCD is considered in
what follows.

Figure 30: Ensemble averaged autocorrelation functions of B2O3 at T = 225◦C for dif-
ferent integration times.

In Fig.30 the independence of the ensemble averaging method on the integration time
is demonstrated. The correlation functions of B2O3 at T = 225◦, thus far below Tg,
are computed over 3007, 2000, 1000 and 500 frames with the acquisition rate of one
frame every four seconds. All data points coincide well with the fitted exponential curve
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(red) although the fit parameters are not very significative due to ageing effects at this
temperature (discussed later). Notice please that even for integration times (∼ 500f)
smaller than the relaxation time (∼ 1623f) we obtain reasonable results.

3.3.5 Comparison of the averaging methods

Both methods deliver good results for sufficiently large statistic i.e. long relative integra-
tion times and large pixel number. To better estimate the accuracy of the autocorrelation
functions we corrected the formula for the confidence bands by the number of coherence
areas viewed by the CCD

∆ = ±
√

4

n
· 2τ

ttot
(C(0)− C(t)) (77)

where n is the total number of the considered pixels and the speckle size is approximated
to ≈ 4 pixels.

Figure 31: Autocorrelation functions computed over the same number of frames and
pixels by ensemble (diamonds on top) and time averaging method (circles
on bottom). The bottom curve is also superposed on the ensemble average
calculated over a small homogeneous pixel region (x-symbols,)

In Fig.31 the autocorrelation functions of the longest (∼ 12h) measurement performed
at T = 235◦C are computed using both averaging methods. In order to obtain the same
statistic level the maximum pixel number is evaluated including the entire beam profile
that led to appreciable shift of the ensemble averaged function baseline A = 0.21 and
also to rescaling of its contrast factor C0. As mentioned in the previous section the
fit parameters τ and β are not affected by the beam profile and both methods provide
consistent values within the estimated half horizontal width of the confidence bands of
C(τ) accordingly to eq.(77). The ensemble averaged autocorrelation function of the flat
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central part of the scattered beam (4 by 150 pixels) is represented in the same plot
by the black x-symbols coinciding very well with the green circles of the time averaged
data.

Although the time averaging method allows to map the spatial distribution of the fit
parameters it requires relatively long measurements and provides spurious results for
large τ/ttot. Due to the acquisition rate of ∼ 1frame/s, most of the measurements have
been performed in the vicinity of Tg defined as the temperature where the system has
the relaxation time τ = 100s. Therefore the ensemble averaging method was considered
as more appropriate and was then used in all following measurements.

3.3.6 Statistical variance

While in the time averaging method we could separately calculate the variance and the
standard error of the mean for each fit parameter using the pixel distribution of the
autocorrelation functions, in the ensemble average we obtain only one autocorrelation
function averaging along the correlation matrix diagonals.

Figure 32: Correlation matrix divided in 5 equal statistically independent submatrices.
The data outside the 5 red squares are no more considered

To obtain the statistical variance we divided thus the autocorrelation matrix in equal
subregions simulating in this manner many shorter but independent measurements at the
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same temperature as shown in Fig.32. Each submatrix corresponds to one independent
autocorrelation function of length equal to the submatrix dimension thus we obtain series
of n autocorrelation functions of equal length. Obviously the statistics obtained in this
manner became worse losing a large amount of data outside the selected subregions and
also because the length of a single autocorrelation function becomes much shorter than
the total measurement time. However it allows us to study the statistical properties of
the results and to derive some conclusions about the behaviour of the system.

Figure 33: Series of autocorrelation functions of boron oxide at 280◦C for 12, 24, 48 and
97 equal correlation subregions of length 120s, 60s, 30s and 15s respectively

Fig.33 shows the autocorrelation function series corresponding to the submatrices ob-
tained by dividing the main correlation matrix into 12, 24, 48 and 97 equal independent
square subregions along the main diagonal. The dimensions of the matrices are then
120s, 60s, 30s and 15s respectively. As expected the averaged values of the fit parame-
ters do not differ essentially, but the standard deviations increase significantly reducing
the matrix dimension. In Fig.34 the mean values with standard deviations of the fit
parameters are plotted versus the length of the autocorrelation functions in units of the
relaxation time τ . The baseline A ≈ 0 is reported only as a reference for the accuracy
of the autocorrelation functions and the corresponding fits.

However more interesting is the statistical variance of the parameters that is expected to
be proportional to the reciprocal measurement time t. In Fig.35 the relative variances
of the relevant τ, β and C0 are plotted as functions of the reciprocal time in units of
τ . As expected the variances of all three parameters increase linearly with decreasing
measurement time. More important in the limit t → ∞ the variance seems to vanish
(within the fit errors) suggesting thus a dynamical homogeneity of boron oxide at 280◦C.
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Figure 34: Averaged fit parameters with standard deviations in dependence on the length
of the autocorrelation functions

If instead the intercepts (P2) in Fig.35 would be positive non zero constants it would
indicate a non statistical variance contribution caused by dynamical heterogeneities as
proposed by Duri et al [Dur05]. The tendency of the intercepts to small negative values
(within the errors) could be explained by the uncertainty of the autocorrelation fits which
increases with increasing ratio τ/t. This is well visible in particular by the variance of
τ which has distinctly higher values for integration times t < 10τ . On the contrary
the variance of the contrast follows quite strictly the 1/t-proportionality because C0 is
simply the average squared intensity of the measured signal thus independent of the
autocorrelation fit.

Figure 35: Variances of τ, β and C0 depending on the measurement time t
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3.4 Results

3.4.1 Temperature dependence

Light scattering measurements were performed on three different samples of B2O3 at
various temperatures in the vicinity of Tg. In Fig.36 the autocorrelation functions of
sample C are plotted at different temperatures covering the temperature range measured
by the CCD. Notice please the logarithmic scale of the x-axis that indicates the rapid
change in the viscosity (∼relaxation time) for small variation of the temperature. The
green squares correspond to the relaxation time of about 100s defining thus the glass
transition temperature at T ≈ 250◦C. The data on the left side of the green squares
correspond consequently to the supercooled liquid domain and on the right rather to the
solid glass where at 230◦C (brown triangles) ageing effects have also been observed (to
be discussed below).

Figure 36: Autocorrelation functions of B2O3 in temperature dependence

It is remarkable that the amplitude of most autocorrelation functions in Fig.36 starts
from nearly the same value of C0 ≈ 0.43 except for those with relaxation times τ < 10s.

For each autocorrelation function we are able to fit the stretched exponential function

C(t) = C0 · e−2(t/τ)
β

and plot the fit parameters C0, τ and β as functions of the temperature. The non
ergodicity level f0 of each autocorrelation function has been calculated according to

f0 =

√
C0

Acohfst
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as introduced in section 3.3.2.

Figure 37: Non ergodicity level f0 at different temperatures

The behaviour of f0 at different temperatures is shown in Fig.37. All three samples
exhibit the similar slight decrease with increasing temperature and approximately same
values within the error bars. Remarkable are the outlier points of sample C at the
higher temperatures 553K(280◦C) and 543K(270◦C) as well as those at 503K(230◦C).
The former appears lower than expected from the trend suggesting the presence of
possible systematic errors related to the fact that at higher temperatures we don’t reach
the plateau of the correlation function at short times. The points at 503K are probably
influenced by ageing effect as they are taken from the corresponding measurements on an
ageing glass discussed later. It is also noticeable that the slope of f0 of sample A appears
to be two times larger than those of the other two samples. This can be explained by the
different preparation history of sample A described in section 3.1. As we will see below
the temperature behaviour of the other two parameters β and τ of sample A differs also
from those of samples B and C.

The dependence of the stretching exponent β on the temperature is reported in Fig.38.
The slight increase of β with the temperature confirms the behaviour observed also by
Sidebottom et al. [Sid93] although the slope of our data appears to be about two times
higher. However the temperature range of our measurements is significantly smaller than
that by Sidebottom et al. and the variance of the data is relatively large resulting into
errors of 30%-50% for the fitted slope. Once again we see that the behaviour of sample
A differs from those of B and C and the data points at the boundary temperatures 553K,
543K and 503K of sample C deviate a little bit from the general trend as mentioned
above.
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Figure 38: Stretching parameter β as a function of temperature

Figure 39: Relaxation time τ as a function of temperature

The behaviour of the mean relaxation time 〈τ〉 is shown in Fig.39. Accounting for the
fact that the fitted stretched exponential is an empirical approximation for the sum over
many relaxations, the mean relaxation time is here given by

〈τ〉 =
τ

β
· Γ(

1

β
)

where β(≈ 0.65) is the stretching exponent discussed above. The y-axis is logarithmic
scaled exhibiting the expected exponential dependence of 〈τ〉 on the temperature as
given by Vogel-Fulcher law

τ(T ) = τ0e
B

T−T0 .

All samples have approximately the same slope that is related to the fragility index
discussed below. The magenta squares show the data reported by Sidebottom et al.
[Sid93]. The corresponding glass transition temperatures Tg(τ = 100s) of each sample
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are directly interpolated from Fig.39. Sample A indicates a different glass transition
temperature TAg ≈ 514K that is about 10K lower than TBg ≈ TCg ≈ 524K of samples
B and C respectively. This fact can be explained by the probably higher water (OH−)
content in sample A that leads to reduced glass transition temperature of B2O3 as
reported by Ramos et al [Ram96]. As described in section 3.1 the sample A was held
only 12 hours at 900◦C whereas samples B and C 48 hours. We suppose thus that
the adsorbed humidity in sample A was not fully evaporated. However, we could not
quantitatively measure the water content of the samples, that was reported by Ramos
et al. to cause differences in Tg of 10−30K for OH−-concentrations of 3.4−5.8 mol%.

Figure 40: Arrhenius plot of the relaxation time τ of the three different samples of B2O3

Finally plotting log10 τ versus the reciprocal temperature in units of Tg as shown in
Fig.40 we obtain the fragility index m = 29 ± 1 of boron oxide given by the slope of
the red line. The data points of all samples coincide well with the fit line except for the
points of the ageing sample C at 503K in the upper right corner. For the sake of clarity
only the fit line is plotted, which accounts for the data points of all samples, but in the
coloured text boxes the fit parameters for each sample are separately reported. There is
no significant difference in the fragility of the different samples which all coincide within
the errors also with the value m = 27± 3 reported by Sidebottom et al. [Sid07]
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3.4.2 Ageing

The properties of a non-equilibrium system continuously change in time as the system
evolves to its equilibrium configuration. Initially the changes occur faster but approach-
ing the equilibrium state the dynamic becomes progressively slower. Thus the autocor-
relation function depends not only on the relaxation time but also on its ageing, i.e. the
waiting time after the system was subjected to an external conditions change (as the
temperature variation). To observe such ageing effects we measured continuously the
relaxation time of B2O3 starting at T = 270◦C and quenching it to T = 230◦C. The
measurement was then repeated in the next two days while the sample has been kept at
constant T = 230◦C.

Figure 41: Correlation matrix of B2O3 while quenching it from T = 270◦C to T = 230◦C

The correlation matrix corresponding to the quenching process from T = 270◦C to
T = 230◦C is plotted in Fig.41 with the rate of 1 frame every 4 sec. The furnace needed
about 15min to achieve T = 230◦C that is well visible in the first ≈ 200 frames. After
that the system, initially liquid at T = 270◦C, is solidified at T = 230◦C. While the
system is ageing we expected a similar visible ”widening” of the main diagonal as by
the initial quenching process. Thus we continued the same measurement for about 6
hours in total. The correlation matrix of the next 5 hours, when the system is supposed
to have equilibrated at T = 230◦C is reported in Fig.42. Because there are no directly
visible effects we conclude that this process occurs on a much longer time scale relative
to the relaxation times. Thus we repeated the measurement without changing anything
in the next two days.

In Fig.43 the autocorrelation functions of the ageing B2O3 are plotted at different ages.
The red crosses and dark red circles in the picture represent the data recorded during
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Figure 42: Correlation matrix of B2O3 at T = 230◦C one hour after quenching it from
T = 270◦C

the quenching process within the initial ≈ 15min of the measurements and are shown
as a reference for the rest of the data which are considered to be equilibrated at T =
(230 ± 0.1)◦C. In consideration of the logarithmic scaled time axis we see that the
autocorrelation function unambiguously changes and the relaxation time increases up to
3 times the initial τ ≈ 800s. It seems also that the contrast C0 changes slightly to higher
values as the glass ages. However, there are not enough data points and the uncertainty
of C0 is relatively high to make conclusions on its behaviour.

Figure 43: Autocorrelation functions of ageing B2O3 at T = 230◦C. The red crosses and
dark red circles are the autocorrelation functions computed over the first 15
min during the quenching process initiated at T = 270◦C

The dependence of the relaxation time τ on the waiting time after the glass has formed
is reported in Fig.44 where the errors of τ are estimated individually for each autocorre-
lation function as described above and the uncertainties in the ageing times correspond
simply to the measurement durations. Paluch et al. described the ageing of CKN by
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the stretched exponential function

τσ(t) = A exp

[
−
(

t

τage

)βage]
+ τ∞

where τσ(t) is the relaxation time of the conductivity σ depending on the ageing time
t and A, β, τage, τ∞ are constants [Pal13]. However we could not fit this function to the
few data points we have, but they indicate a similar trend to approach a certain value
τ∞ starting at a value fixed by A.

Figure 44: Relaxation time of ageing B2O3 at T = 230◦C
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4 Conclusions

A multi-speckle setup based on a CCD-camera has been installed and optimized to
measure dynamic light scattering on samples close to the structural arrest. This setup
provides speckle sizes of nearly 4 pixels in size. This choice has the advantage of granting
the maximum contrast of the calculated autocorrelation functions. To improve the
statistics it may be better to use smaller speckles of about one pixel size. This would,
however, also reduce the contrast (amplitude) of the computed autocorrelation functions.
The compromise between contrast and statistics is a non-trivial issue in particular for
low scattered intensity as in the case of the present study.

Two different methods for processing of the raw data have been investigated and com-
pared. Both methods, based on the computation of the autocorrelation function, provide
consistent results for ergodic systems and for sufficiently long measurements, but differ
essentially at temperatures close to and below Tg, where the system is arrested in a
non-equilibrium state. The time averaging method allows to separately calculate the au-
tocorrelation function of each pixel and to map the spatial distributions of the observed
quantities. It provides good results for autocorrelation functions averaged over many
relaxation times (> 100τ), but it is not very suitable to study systems close to or in
the arrested state, where in particular spatial and temporal dynamical heterogeneities
can be expected. We have shown the systematic deviation of the relaxation time τ mea-
sured using the time averaging method as a function of the integration time (Fig.26)
and propose that this result can be further used as a correction factor for insufficiently
long integration times. This can be particularly useful when a pixel mapping of the
relaxation times is of interest.

On the other hand the ensemble averaged autocorrelation function doesn’t distinguish
among different pixels, but it yields, depending on the pixel number, precise results
regardless of the measurement time. The correlation matrix described in section 3.3.4
provides moreover features allowing to study higher correlation moments and time re-
solved heterogeneous dynamics as proposed by Duri et al.[Dur05]. Improving the statis-
tics of the exploited pixels, e.g. by reducing the speckle size as mentioned above, but
also using techniques for correction of the intensity profile of the scattered beam, it will
allow investigating different regions of interest (ROI) of the CCD and studying spatial
correlation and heterogeneity as well [CW10].

We studied the statistical distributions and variances of the measured quantities. The
measured intensity distribution of the speckle pattern yields an estimate of the back-
ground intensity by comparison with the predicted theoretical distribution [DC15]. This
may be useful to extract the stray light contribution, that is not always directly mea-
surable. The variances of the correlation parameters suggest some conclusions on the
dynamical heterogeneity of the considered system. The dynamics of supercooled liquid
boron oxide at 553K appears to be homogeneous within the statistical accuracy provided
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by an integration time of 104 ·τ and for a CCD-area of ≈ 280 speckles sizes. That means
that eventual dynamical heterogeneities at 553K could be observable only pushing the
statistics to more than 104 × 280 independent coherence events. However, these studies
should be extended to lower temperatures close to Tg, where the dynamical heterogeneity
should become observable.

We have determined the glass transition temperatures TAg ≈ 514K and TB,Cg ≈ 524K
of our B2O3-samples A, B and C respectively, which are comparable with Tg-values
from previous works [E.R93, Sid93, Ram96]. The published values of Tg vary in the
range from 524K [Sid93] up to 580K [Bot07] strongly depending on the purity as well
as on the preparation method as reported by Ramos et al.[Ram96]. Consequently our
autocorrelation parameters, namely the relaxation time τ , the non ergodicity level f0
and the stretching exponent β and their temperature dependences slightly differ from
sample to sample. The fragility m = 29 ± 2 of our samples, instead, appears to be
independent of Tg and is in a good agreement with the value m = 27 ± 3 reported by
Sidebottom at al.[Sid07].

We reported τ, β and f0 as function of temperature T. The relaxation time exhibits the
expected exponential dependence on T. Our results for the observed slight increase of β
with T are consistent with the results of Sidebottom et al.[Sid93]. The slight decrease
of f0 instead may be influenced by the insufficient frame rate of ≈ 1 Hz of our CCD.
Therefore it would be worthy to study the non ergodicity level using a CCD with a
higher frame rate or at lower temperatures, i.e. where the relaxation time gets longer
and the initial plateau ∼ f 2

0 of the α-relaxation is well defined. Our mean value of
f0 = 0.84±0.3 is higher than the (constant) value of 0.75±0.03 reported by Sidebottom
et al. [Sid07]. This discrepancy could be related to our estimation of the stray light
factor fst in section 3.3.2, which was supposed to be temperature independent and equal
in both CCD and photomultiplier data. However more studies should be carried out to
test this hypothesis.

In the last part of the thesis the ageing of B2O3 -glass is observed and the relaxation
time is reported as a function of the ageing time. For B2O3 this phenomenon appears at
relatively large time scales (the measurements were carried out over three days) so that
we could measure only few ageing points. The variation of the relaxation time τ with
the waiting time is well visible starting at a certain fixed point τ0 and increasing up to
a saturation value τ∞.

The whole set of results obtained in this thesis work, both the instrumental, the data-
analysis related and the scientific ones, open the way to new studies on glass-formers close
to the structural arrest, where the multi-speckle light-scattering setup can be exploited
to obtain new information with high-statistical accuracy on the nature of the glass-
transition process.
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