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Abstract

During the course of this thesis, the ultrafast dynamics of skyrmion materials was
studied. The main focus of the work was GaV

4

S
8

, for which the first evidence
of skyrmion lattice was obtained only recently. Moreover, this material undergoes
a structural phase transition, the so-called Jahn-Teller distortion, so spontaneous
Raman and differential reflectivity measurements were conducted in order to see how
the phonon spectra changes with change in symmetry. We attempted to determine
which of the observed modes are JT-active. In order to study the magnetization
dynamics of GaV

4

S
8

, the TR-MOKE double-modulation technique was used, which
was the first time the ultrafast optical spectroscopy was used to probe magnetization
dynamics of this material . The TR-MOKE measurements were also conducted for
Cu

2

OSeO
3

in order to see if we can observe the magnetization dynamics in Kerr
geometry.
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1 Introduction

While studying hadrons in nuclear physics in 1960s, Tony Skyrme showed that cer-
tain particles are topologically protected [1]. These particles were named skyrmions
and for a long time were considered unusual non-equilibrium entities which cannot
be easily observed. This assumption was proven incorrect with the discovery of a
skyrmion lattice in the chiral phase of the transition-metal compound MnSi using
small-angle neutron scattering (SANS) [2]. Moreover, it was predicted in various
theoretical works [3–7] that topologically protected quasiparticles can be observed
in solid state materials such as chiral magnets in the form of stable spin vortices -
magnetic skyrmions (Fig. 1).

Figure 1: Schematic drawing of a skyrmion lattice [8].

The resemblance of skyrmions to magnetic bubbles, which were considered to
be possible nanostructures for data storage applications [9], implies, for the former,
an eventual technical applications in spintronics [10]. The reduced critical current
density and magnetic fields for skyrmion materials and the stability of the skyrmion
lattice may allow for low energy operation in future memory devices [11]. Skyrmions
can also be represented as circulating dissipationless spin currents. This property
gives rise to the possible applications of skyrmionic crystals in the branch of spin-
tronics focused on the manipulation of a pure spin currents without charge transfer
[12]. Such currents can bypass the constraints of conventional electronics and give
rise to low-power and high-bandwidth information transfer [13].

Topologically protected spin-vortices were first observed in metallic compounds
with cubic structure such as MnSi, Fe

1-x

Co
x

Si and FeGe [2, 14–16]. Subsequently,
observations of skyrmions were reported in various bulk and thin film systems. One
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example of such a compound is the chiral lattice magnet Cu
2

OSeO
3

[17], one of the
materials central to this work. The presence of a skyrmion lattice was experimen-
tally shown primarily for materials with non-centrosymmetric chiral structure. In
this type of crystal, topologically protected spin vortices are formed by Bloch-type
domain walls, which leads to the formation of vortex-like skyrmions. In the case of
Bloch domain walls, the spins rotate in the plane parallel to the domain boundary.
Hence, in Bloch skyrmions, the spins rotate in tangential planes when moving from
the center of the vortex to the periphery. However, in polar magnets with a C

nv

crystal symmetry, another type of skyrmions is formed - Néel skyrmions [3, 4, 18].
This type of skyrmion is induced by Néel domain walls, where the spins rotate in a
plane perpendicular to the domain boundary, leading to the formation of a structure
with spins rotating in the radial planes from the center to the periphery (Fig. 2).
In this work, the magnetic semiconductor GaV

4

S
8

was investigated as an example
of a material supporting Néel skyrmions.

Figure 2: Bloch (a) and Néel (b) type skyrmions [19].

In recent years, numerous techniques were used in order to observe skyrmions
in magnets, including SANS (which was mentioned above as the first experimental
evidence of a chiral magnet hosting skyrmion phase), LTEM (Lorentz transmission
electron microscopy) [15], MFM (magnetic force microscopy) [20], and spin-resolved
scanning tunneling microscopy [21, 22]. In order to study the dynamics of skyrmions
it is also possible to use optical techniques. Previously, single skyrmions have been
created by ultrafast laser excitation in thin ferromagnetic films [23, 24]. In the
same way, ultrafast optical spectroscopy is a promising tool for the investigation
of Cu

2

OSeO
3

and GaV
4

S
8

, because it allows for the manipulation of the magnetic
order. It provides the opportunity to trigger and subsequently detect electronic
excitations, and hence, the magnetization dynamics of the materials on small time
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scales. Tokura et al. used the inverse-Faraday effect to excite the skyrmion phase in
Cu

2

OSeO
3

and detected the resultant spin dynamics via time-resolved magneto op-
tics [25]. We extended upon these findings by employing the time-resolved magneto-
optical Kerr effect (TR-MOKE). Additionally, we studied vibrational properties of
GaV

4

S
8

to probe the Jahn-Teller distortion via measuring spontaneous Raman spec-
tra and differential reflectivity of a sample.
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2 Skyrmions

2.1 Skyrmion spin structures and their properties

Originally proposed in nuclear physics to describe certain particles as localized states
[1], skyrmions turned out to be a very interesting concept for condensed matter
physics. In recent years, skyrmions have been actively studied in the field of solid
state magnetism. A magnetic skyrmion is a topological particle in real space, which
is composed of spins pointing in all directions wrapping a sphere and resembles a
hedgehog. In 2D space a hedgehog configuration can be projected on a plane as a
skyrmion (Fig. 3).

Figure 3: Schematic image of the original hedgehog-like skyrmion proposed by
Skyrme (top) and a projection of it on a two-dimensional plane (bottom) [26].

The number of wrappings of the spins around a sphere is called winding number.
This number is a topological invariant, thus the skyrmions have topologically pro-
tected stability. The winding number in the case of a projected skyrmion is given
by [26]

G =

Z
d2r

✓
@n̂

@x
⇥ @n̂

@y

◆
· n̂, (2.1)

where n̂ = M/ |M| is the unit vector pointing in the direction of magnetization. For
a single skyrmion, the value of G is given by 4⇡Q, where Q = ±1 is the skyrmion
number. The sign of Q corresponds to the spin state at the skyrmion core: Q = 1 for
spin up and Q = �1 for spin down. The possible types of skyrmion structure can be
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described by vorticity m (+1 for a skyrmion and -1 for an anti-skyrmion) and helicity
�, as shown in Figure 4. Dependence of m and � on the energy required for the
formation of the skyrmions varies for different mechanisms of skyrmion generation
[11].

Figure 4: Skyrmion structures with different values of vorticity m and helicity �.
The arrows point in the direction of in-plane spin components and the brightness
indicates the direction of spin components normal to the plane (white- up direction,
black- down direction) [11].

Skyrmion spin structures can be formed and stabilized by a variety of mecha-
nisms which can contribute simultaneously. Long-range magnetic dipolar interac-
tions dominate in magnetic thin films with perpendicular easy-axis anisotropy, where
the dipolar interaction prefers an in-plane magnetization while the anisotropy prefers
out-of plane magnetization. These interactions compete with each other, leading
to the formation of a periodic array of magnetic bubbles or skyrmions, with sizes
ranging from 100 nm to 1 µm depending upon the applied magnetic field oriented
perpendicular to the film [9, 27–29]. For the formation of atomic-sized skyrmion
structures (on the order of the lattice constant (v1nm)), the dominant mechanisms
are frustrated exchange interactions [30] and four-spin exchange interactions [22].
In non-centrosymmetric magnets, the formation of a skyrmion lattice is caused by
competition between the Dzyaloshinskii-Moriya (DM) and ferromagnetic exchange
interactions. In this case, the size of a single skyrmion is typically 5-100 nm. When
skyrmion spin structures are generated by DM or long-ranged magnetic dipolar
interactions, skyrmions are larger than a lattice constant allowing for use of the
continuum approximation. These large-scale skyrmions have many internal degrees
of freedom and are highly mobile [11]. The materials studied in this work are non-
centrosymmetric magnets, hence the DM interaction is responsible for the formation
of the skyrmion lattice. This case is considered in more detail in the next section.
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2.2 Skyrmions in non-centrosymmetric magnets

In magnets without spatial inversion symmetry, the Dzyaloshinskii-Moriya (DM)
interaction (which originates from the relativistic spin-orbit coupling) becomes finite
[31, 32]. In a continuum spin model, the DM interaction is given by:

H
DM

/
Z

drM · (r⇥M) , (2.2)

where M is the classical magnetization vector. The DM interaction competes with
the ferromagnetic exchange interaction (J > 0) which can be written as:

H
ex

/
Z

dr (rM)2 . (2.3)

As a result of this competition, a helical spin order with a uniform turn angle is real-
ized in the absence of an external magnetic field. In 1980, Bak and Jensen proposed
the continuum spin model to describe the magnetism in MnSi as a prototypical
chiral magnet [33]. In their model they considered the following Hamiltonian:

H = H
ex

+H
DM

+ H
Zeeman

+magn. anisotropies , (2.4)

where:

H
ex

=

Z
d

3

r

J

2a
(rM)2, (2.5)

H
DM

=

Z
d

3

r

D

a

2

M · (r⇥M), (2.6)

H
Zeeman

= �
Z

d

3

r

1

a

3

B ·M, (2.7)

magn. anisotropies =

Z
d3r

A
1

a3
�
M4

x

+M4

y

+M4

z

�

�
Z

d3r
A

2

2a

�
(r

x

M
x

)2 + (r
y

M
y

)2 + (r
z

M
z

)2
�
. (2.8)

Equation (2.7) represents Zeeman coupling to an external magnetic field B and
equation (2.8) describes the magnetic anisotropies allowed by a cubic crystal sym-
metry. As long as the small values of the constants A

1

and A
2

are considered, this
term of the Hamiltonian doesn’t play a major role in the continuum spin model. The
lattice constant is given by a. The continuum approximation is justified when D/J

is small and this ratio determines the period of a skyrmion lattice. Starting from
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the continuum model given by equation (2.4), one can obtain a classical Heisenberg
model on the cubic lattice by dividing the space into cubic meshes.

In order to study the stability of a skyrmion phase in the continuum spin model,
one can write the Ginzburg-Landau free energy functional near the critical tempera-
ture T

c

. Ginzburg-Landau theory gives a continuum characterization of the various
phase transitions. This phenomenological theory is based on the existence of an
order parameter which is non-zero in the ordered phase below T

c

and becomes zero
above T

c

. Close to the phase transition the order parameter is small and the energy
functional can be expanded as a power series around the order parameter [34]. The
Ginzburg-Landau free energy functional for a chiral lattice magnet can be written
as (2.9) [2]

F [M] =

Z
d3r

⇥
r
0

M

2+J (rM)2 +2DM · (r⇥M)+UM

4�B ·M
⇤
. (2.9)

The first four terms of the equation (2.9) describe different interactions: J describes
ferromagnetic exchange, D the DM interaction, and U the interaction between dif-
ferent modes. The last term describes Zeeman coupling. In our case the order
parameter is the local magnetization M (r). The state of the system and the value
of the order parameter are determined by the condition of free energy minimization.
The dimensionless (Gibbs) free energy G as a function of the applied magnetic field
and temperature is given by equation

Z = exp(�G) =

Z
DMe

�F [M], (2.10)

where Z is the partition function and DM means integration over all possible config-
urations of M. One can calculate free energy G using the mean-field approximation

G v minF [M] = F [M0], (2.11)

where M0 is the minimum of the free energy functional F . In the mean-field ap-
proach one looks only at the stationary points of F , neglecting any fluctuations
around these points. However, in order to reproduce the skyrmion phase it is neces-
sary to take into account thermal fluctuations around the mean field value M0 and
add a correction term to equation (2.11) [26]. Thus, the free energy is given by

G t F [M0]+
1

2
log

"
det

✓
�2F

�M�M

◆

M=M0

#
. (2.12)

In close proximity to T
c

, the contribution from order parameter fluctuations is com-
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parable to its mean-field value, and equation (2.12) becomes invalid.

2.3 Magnetic phases and spin dynamics of the skyrmion ma-

terials

The first experimental observation of a skyrmion lattice was made in the chiral
non-centrosymmetric magnet MnSi in 2009 by means of SANS [2]. Since then, they
have been observed in many other compounds as well. Besides MnSi, metallic ma-
terials with cubic structure, such as Fe

1-x

Co
x

Si [14] and FeGe [16], were identified as
skyrmion systems. Moreover, the presence of a skyrmion phase was experimentally
observed in thin films (one-atomic-layer-thick Fe film on Ir(111) [22]) and centrosym-
metric magnets (hexaferrite Ba(Fe

1-x-0.05

Sc
x

Mg
0.05

)
12

O
9

[35]). The insulating chiral
lattice magnet Cu

2

OSeO
3

is another example of a non-centrosymmetric material
hosting a skyrmion phase. Since this compound is studied in the current work,
the possible phases of a skyrmionic material are discussed using Cu

2

OSeO
3

as an
example.

The experimental magnetic phase diagram for Cu
2

OSeO
3

obtained via Faraday
rotation measurements is given in Figure 5. It shows ferrimagnetic and paramagnetic
phases and three chiral phases – the helical, conical, and skyrmion (SkL) phase. The
chiral magnetic phases will be considered in more detail later in this section.

Figure 5: The magnetic phase diagram of Cu
2

OSeO
3

obtained from a Faraday ro-
tation. B

a

is the applied magnetic field along (111) direction. The color mapping
indicates the second derivative of Faraday rotation ✓

F

[36].
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Helical phase: At zero applied magnetic field Ba and below the critical tempera-
ture T

c

, Cu
2

OSeO
3

exhibits helical magnetic order. In this phase, the magnetization
rotates around an axis of the propagation vector q of the helix (Figure 6). The local
magnetic moment M is perpendicular to q.

Figure 6: Twisting of the magnetization around an axis of the propagation vector q
in helical phase [37].

The period of the helix �
h

equals to 2⇡/ |q|, and can be determined from the
competition of the ferromagnetic and Dzyaloshinskii-Moriya interactions, which is
generally much larger than the lattice constant. The propagation direction of the
helix q̂ = q/ |q| is the result of the very weak magnetic anisotropies [38].

Conical phase: Increasing the magnetic field value above a critical field
B

c1

< B
a

and keeping the temperature below T
c

leads to alignment of the multi-
domain structure to the applied magnetic field. At a critical magnetic field value
B

c2

> B
a

the Dzyaloshinskii-Moriya interaction can be completely neglected and the
transition to ferrimagnetic phase occurs. The intermediate region with B

c1

< B
a

<

B
c2

corresponds to the so-called conical magnetic phase. The propagation vector q

aligns along the direction of the applied magnetic field Ba, and the local magneti-
zation is no longer perpendicular to the vector q, instead tilting in the direction of
the magnetic field which leads to a uniform magnetization (see Figure 7).

Figure 7: Alignment of the propagation vector q along the direction of the applied
magnetic field [37].

A representation of the spin dynamics for the conical phase is depicted in Figure
8. In this case the spins, which are slightly tilted in the direction of magnetic field
and propagation vector, evolve around the cones.
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Figure 8: Spin dynamics of the conical phase, the colors represent the directions of
the in-plane components (perpendicular to the propagation vector) in the conical
structure [39].

Skyrmion phase: For finite applied magnetic field values B
c1

< B
a

< B
c2

in a
small temperature region of the magnetic phase diagram close to T

c

, a first order
phase transition separates the skyrmion phase from the surrounding conical phase.
The new ground state of the system is a two-dimensional hexagonal skyrmion lattice
oriented perpendicular to the applied magnetic field. The lattice constant is given by
a
SkL

= 2�
h

/
p
3. The skyrmion lattice decouples from the atomic crystal lattice, such

that the plane of the skyrmion lattice orients perpendicular to the applied magnetic
field Ba independently of the underlying atomic orientation. The schematic image
of the skyrmion lattice is given in Figure 9.

Figure 9: The two-dimensional skyrmion hexagonal lattice formed in the SkL phase
[37].

Spin dynamics of a skyrmion crystal: The goal of this work is to study mag-
netization dynamics of the chiral magnet Cu

2

OSeO
3

and the polar magnet GaV
4

S.

14



Thus, one has to consider the response of the system to oscillating magnetic and elec-
tric fields H! and E!. Recently, the spin dynamics has been detected not only in the
frequency domain but also in the time domain using pump–probe techniques[25]. For
the skyrmion lattice spin state, theoretical studies have predicted several magnetic
resonance modes characterized by different selection rules [40]. For an in-plane mag-
netic field, clockwise (CW) or counterclockwise (CCW) skyrmion rotational modes
are expected. For an out-of-plane magnetic field, one expects to detect a breathing
mode, which shrinks and expands in the plane perpendicular to the direction of
magnetization M. Schematic drawings of the CW and CCW rotational modes and
the breathing mode are given in Figure 10.

Figure 10: CW and CCW rotational modes of the skyrmion phase (in-plane magnetic
field) and breathing mode (out-of-plane magnetic field) (adapted from [39]).
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3 Bloch and Néel-type skyrmion lattice

Different kinds of skyrmion structures can be generated, depending on the type of
domain walls. When ferromagnetic domains with ±M magnetizations are separated
by a domain wall parallel to the M axis (180o domain wall), two main types of spin
textures can emerge in the domain wall region. In cases where the magnetic moments
show a screw-like continuous rotation within a plane parallel to the domain wall, the
wall is called a ”Bloch wall”. This type of domain wall leads to formation of Bloch
skyrmions. However, magnetic anisotropy can stabilize the cycloidal continuous
rotation of magnetic moments within a plane normal to the domain wall. This type
is called a ”Néel wall” supporting Néel skyrmions are generated. The schematic
drawings for both types of domain walls are given if Figure 11.

Figure 11: Bloch and Néel domain walls [26].

3.1 Cu2OSeO3

In Cu
2

OSeO
3

, Bloch skyrmions are generated by competition between the DM inter-
action and ferromagnetic exchange. This compound has a chiral and cubic structure
similar to MgSi. Its crystal structure is given in Figure 12. Cu

2

OSeO
3

is ferromag-
netic with a Curie temperature around 60 K. At room temperature, it has the cubic
space-group P2

1

3 which allows piezoelectricity but not a spontaneous polarization
[41]. Below the critical temperature, the crystal structure of Cu

2

OSeO
3

remains cu-
bic but the magnetic ordering lowers the symmetry to space-group R3. Cu

2

OSeO
3

lacks inversion symmetry.
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Figure 12: The crystal structure of Cu
2

OSeO
3

[17].

The unit cell of Cu
2

OSeO
3

contains 16 Cu2+ ions which form two non-equivalent
copper sites with different oxygen ligand configuration (Cu

1

and Cu
2

sites). The local
environment can be approximated by a trigonal bipyramid and square pyramid for
Cu

1

and Cu
2

ions, respectively. The ratio of Cu
1

to Cu
2

sites in the unit cell is 1:3.
Ferromagnetic exchange interactions between the neighboring sites are described by
the Heisenberg Hamiltonian given by equation (2.5).

In the unit cell, four spin clusters are formed (Figure 13). The electron configura-
tion of the Cu atom reduces from [Ar]3d104s1 to [Ar]3d9 for a Cu2+ ion which leads
to absence of an electron from the outer shell. In each cluster there are three spins
up (s = 1

2

) and one spin down (s = �1

2

). The total spin of the spin cluster is then
S = 1. The coupling constants J correspond to the exchange interaction of spins
within separate copper tetrahedra and between different tetrahedra. Due to the
complex crystal structure of Cu

2

OSeO
3

, there are five different coupling constants.

17



Figure 13: The unit cell of Cu
2

OSeO
3

[42].

The ”strong” coupling constants are JAF

s

and JFM

s

. These constants describe
spin exchange interaction within the clusters. The coupling constants JAF

w

, JFM

w

,
and JAF

o...o

(the last one is a long-range coupling constant) characterize ”weak” cou-
pling corresponding to spin exchange interaction between different clusters. The
AF and FM correspond to the antiferromagnetic and ferromagnetic spin exchange
interactions, respectively.

Since Cu
2

OSeO
3

is chiral and lacks inversion symmetry, there is also an antisym-
metric Dzyaloshinskii-Moriya (DM) exchange interaction, that competes with the
stronger Heisenberg interaction. The coupling constant of the DM interaction is
associated with the bond between the different spins. The DM interaction term is
zero when the spins are perfectly aligned (cross product in equation (2.6) is zero).
The competition between the Heisenberg and DM exchange interactions results in
long-range helimagnetic order with the period of the helices proportional to D

J

.
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3.2 GaV4S8

Figure 14: The crystal structure of GaV
4

S
8

[43].

The polar magnet GaV
4

S
8

also hosts a skyrmion phase, but the skyrmions generated
in this material are of the Néel type. The crystal structure of GaV

4

S
8

is given in
Figure 14. This is a Mott insulator having a lacunar spinel structure with a general
formulation AB

4

S
8

. In this structure type, there are (B
4

X
4

)n+ cubic and (AX
4

)n�

tetrahedral cluster ions, which are weakly coupled in an NaCl configuration [44].
For GaV

4

S
8

, these clusters are (V
4

S
4

)5+ and (GaS)5�, respectively. The difference
from a cubic spinel structure AB

2

S
4

is that one-half of the tetrahedral A sites remain
empty, which leads to a reduction of symmetry from the space group Fd3̄m to F 4̄3m.
Since the distances between the four vanadium atoms in the (V

4

S
4

)5+ clusters are
significantly shorter than between vanadium atoms from different clusters, their
electronic properties can be understood on the basis of molecular orbitals (MO).
The electrons of V atoms not integrated in V-S bonds localize in cluster MOs, each
occupied with 7 electrons. There is one unpaired electron per V

4

cluster. The
clusters are widely separated, hence the orbitals do not overlap with each other and
the compound is nonmetallic. The electric conduction happens due to electrons
hopping between the V atoms in separate (V

4

S
4

)5+ clusters.
The Jahn-Teller effect drives a cubic to rhombohedral structural transition at

T
JT

w 42 K, leading to a space group reduction from Fd3̄m to R3m and the for-
mation of a multi-domain state. The structural transition is caused by an orbital
degeneracy in the asymmetrically filled electronic configuration of the V

4

clusters,
which distorts in order to remove the degeneracy and lower the energy. Due to
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the Jahn-Teller distortion, the V
4

clusters are elongated along the 3-fold axis, and
the distortion lowers the energy of some orbitals while raising energy of the others.
The structural transition removes the degeneracy of the t

2

-level (point group T
2

) by
splitting it into two degenerated levels: the e level with higher energy and the a

1

level with lower energy (point group C
3v

). MO schemes of the cluster orbitals in
GaV

4

S
8

before and after the Jahn-Teller distortion are shown in the Figure 15. The
Jahn-Teller distortion causes a dramatic increase in the the magnetic interaction at
the low temperatures and GaV

4

S
8

becomes ferromagnetic below T
c

= 13K.

Figure 15: MO schemes of the cluster orbitals in GaV
4

S
8

before and after structural
transition [45].

In GaV
4

S
8

, the skyrmions are also generated as a result of competition between
the DM interaction and ferromagnetic exchange. However, the phase diagram for
GaV

4

S
8

is different form that of Cu
2

OSeO
3

. This could be a consequence of the
large uniaxial magnetic anisotropy of GaV

4

S
8

caused by its rhombohedral crystal
structure. Cu

2

OSeO
3

, on the other hand, has low magnetic anisotropy due to its
cubic structure. This difference leads to an anisotropic and isotropic DM interaction
for GaV

4

S
8

and Cu
2

OSeO
3

, respectively, and can thus influence the magnetic phases
in these materials. The phase diagram for GaV

4

S
8

is given in Figure 16 for different
applied field configurations.
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Figure 16: Magnetic phase diagram for GaV
4

S
8

. The insets show the orientation of
magnetic field B relative to the easy axis of the different domains [19].

A new magnetic phase appears in GaV
4

S
8

, the so-called cycloidal phase. Here,
the spins rotate in a plane containing the propagation vector q, in contrast to the
helical spin state present in Cu

2

OSeO
3

where spins rotate in a plane perpendicular
to q. Additionally, the skyrmion phase exists over significantly broader temperature
region. Moreover, due to the multi-domain state which appears after the Jahn-Teller
distortion, at certain magnetic field orientations, additional phases emerge at higher
B values (Figure 16 a). The differences in the magnetic phase diagram from well-
studied helical magnets such as Cu

2

OSeO
3

, make GaV
4

S
8

a particularly interesting
material to investigate.
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4 Experimental methods

This chapter discusses the main principles of ultrafast spectroscopy and the physics
of the magneto-optic Kerr effect. The techniques employed for studying Cu

2

OSeO
3

and
GaV

4

S
8

magnetization dynamics are also described.

4.1 Fundamentals

4.1.1 Generation of ultrashort pulses

Spectroscopy allows us to study the interaction between light and matter and is a
major tool used in the study of the properties of different materials. These prop-
erties are investigated by analyzing the absorption or emission spectrum or optical
properties such as the refractive index. The invention of the laser in the 1960s pro-
vided new methods to investigate various phenomena occurring in materials, and
has allowed us to obtain data formerly unattainable. Lasers stimulate atoms to
emit light at certain wavelengths, producing a narrow beam of electromagnetic ra-
diation. Many types of lasers have been developed with a variety of characteristics,
and the emergence of mode locking provided a method to obtain ultrashort pulses
from lasers. In such mode-locked lasers, techniques such as active or passive mode
locking is used to generate a train of pulses. Mode-locked lasers producing pulses in
the nanosecond range were first demonstrated by Gürs and Müller with ruby lasers
[46, 47] and Statz and Tang with He-Ne lasers [48]. Later, pulses were reduced to
an even lower time-scale as femtosecond lasers were introduced [49].

In mode-locked laser the resonator contains an active or nonlinear passive element
which leads to the generation of a short pulse traveling back and forth in the laser
cavity. Every time the pulse hits an output coupler, a semi-transparent dielectric
mirror, a pulse is emitted. To produce a train of ultrashort pulses in the time domain
a broad bandwidth determined by a temporal duration of a pulse is required. Each
mode is a solution to the Helmholtz equation that describes the laser cavity

�E + k2E = 0, (4.1)

where k = !/c is a wavevector and E is the electric field. The frequency of the
nth mode can be represented as ⌫

n

= n c

2d

, where n is an integer number and d is the
length of the resonator. The corresponding spacing between the pulses is �⌫ = c

2d

.
For continuous wave (CW) emission, the laser’s output is a superposition of a few
modes around the center frequency which have random phases. The output electric
field for CW operation of the laser is given by
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E(t) =
X

n

E
n

ei[(!0+n�!)t+�n], (4.2)

where !
0

is a center frequency and E
n

,�
n

are the amplitude and the phase of nth

mode, respectively [50]. In this case, the intensity randomly fluctuates around some
average value. When the laser is mode-locked, the modes have the same phase and
a significant increase in intensity can be achieved. The output electric field of the
mode-locked laser can be approximated by

E(t) / eiN!t � 1

ei!t � 1
ei!0t, (4.3)

and the corresponding intensity is given by

I(t) = |E(t)|2 / sin2(N!t/2)

sin2(!t/2)
, (4.4)

where N is the number of modes. There are, in general, two mode-locking schemes:

Active mode locking: In this case a loss modulator (e.g., an acousto-optic
modulator) is inserted into the resonator. The modes can be locked by modulating
the loss at the period which is the same as the cavity round trip time T

R

. Most of
the time, the loss of the cavity is kept lower than the gain except for the short period
T
R

. Only the pulse constructed from superposition of the modes arrives at the loss
modulator in this short window of time. On each trip in the cavity the modulator
cuts off the preceding and trailing parts of the pulse.

Passive mode locking: In this method, the active modulator is replaced by
a saturable absorber which is a nonlinear material having an intensity dependent
loss. The saturable absorber has a constant absorption for low incoming intensities.
However, absorption decreases to lower values for higher intensities. Since in this
technique the pulse is modulating itself, it has two major advantages: there is no
need for external synchronization and the response time of the modulator is very
short.

4.1.2 Dispersion compensation

The refractive index is a major parameter dictating the optical properties of any
given material. Since the index of refraction of a material typically depends on
frequency (i.e. materials are dispersive), there are serious consequences for pulse
propagation through matter. Dispersion causes different frequencies in the wave
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packet of the pulse to propagate with different speeds. Thus, broadening of the
temporal intensity profile occurs.

The time delay experienced by the ultrafast pulses in various optical devices is
described by the group delay (GD)

T
g

=
@'(!)

@!
, (4.5)

where ' is the spectral phase evolving with frequency as

'(!) =
!n(!)L

c
. (4.6)

Here n(!) is refractive index and L is the propagation length.
Expansion of the phase around the center frequency !

0

gives

'(!) w L

c

"
'
0

+ (! � !
0

)

✓
@'

@!

◆

!0

+
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0
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2
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@2'
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◆
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where GDD =
⇣

@

2
'

@!

2

⌘

!0

=
⇣

@Tg

@!

⌘

!0

is the group delay dispersion. GDD governs the
dominant broadening or compression of the pulse.

The expected values of GD and GDD for an optical path P = nL can be calculated
using the equations

T
g

(!) =
P

c
+
!

c

dP

d!
, (4.8)

GDD =
1

c

✓
2
dP

d!
+ !

d

2

P

d!2

◆
. (4.9)

Propagation of a pulse through a medium with positive dispersion causes the low
frequency components to outrun the higher frequency components, while negative
dispersion leads to the opposite effect. Hence, balance of the negative and positive
dispersion has to be achieved so that the higher frequency components will catch
up with the low frequency components or vice versa.

In mode-locked lasers with pulse durations less than roughly 25 fs, one has to
provide dispersion compensation not only for GDD, but also (ideally) for third order
dispersion (TOD)

TOD =

✓
@3'

@!3

◆

!0

=

✓
@2T

g

@!2

◆

!0

. (4.10)
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The corresponding change in the spectral phase is given by

�' =
L

6c
(! � !

0

)3 · TOD. (4.11)

In order to achieve dispersion compensation one can use optical schemes such as
prism compressor. It is an optical device which consists of two prisms and a mirror.
If the different frequency components of a laser pulse are separated in time, the
prism compressor can make them overlap with each other, thus causing a shorter
pulse and achieve the GDD matching via adjusting the distance between the prisms
and prism insertion. Since one can also choose between different prism materials,
the optimal dispersion compensation can be achieved. Moreover, one can use low
GDD optics such as mirrors, beam splitters etc. in order to avoid the drastic pulse
broadening.

4.1.3 Magneto-optic Kerr effect

The magneto-optic Kerr effect (MOKE) describes the changes in the polarization
and intensity of the light reflected from a magnetized surface. MOKE is the phe-
nomenological analog to the Faraday effect, describing the changes in the properties
of the light transmitted through a magnetic material. Both effects originate from
the off-diagonal components of the dielectric tensor ". The Kerr or Faraday rotation
can be measured in different geometries classified by the direction of the magneti-
zation vector M (Figure 17). Under appropriate conditions, the MOKE signal is
proportional to the magnetization M, thus one can use this technique in order to
optically probe the magnetization of the sample.

Figure 17: Different MOKE geometries depending on the orientation of the incom-
ing light and the magnetization direction of the sample: longitudinal, polar and
transverse.

The general form of the dielectric tensor can be written as
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For some crystal systems (e.g., cubic), this matrix can be diagonalized so that non-
diagonal elements vanish

"(!) =

0

B@
"
xx

0 0

0 "
yy

0

0 0 "
zz

1

CA . (4.13)

If the relationship between the the matrix elements is "
xx

6= "
yy

6= "
zz

, the crystal
is biaxial and if "

xx

= "
yy

6= "
zz

, it is uniaxial. When all diagonal matrix elements
are equal to each other, the crystal is cubic. In the simpler cases of cubic (4.14) and
uniaxial (4.15) crystals, the refractive indices are given by

n =
p
"; "

yy

= "
zz

= ", (4.14)

n
o

=
p
"
1

, n
e

=
p
"
2

, ; " = "
yy

= "
1,

"
zz

= ". (4.15)

In the equation (4.15), n
o

is the ordinary refractive index and n
e

is the extraordinary
refractive index.

In the presence of a finite magnetization, the off-diagonal components of the di-
electric tensor become non-zero. These off-diagonal components induce the Kerr and
Faraday effects and appear in the dielectric tensor because time-reversal symmetry
in the material is broken. One can consider a dielectric tensor (equation (4.16)) for
a cubic material with non-zero diagonal elements (M is along z, polar geometry) in
order to derive the expressions for the Kerr and Faraday rotations and ellipticities,
the measured quantities in our experiment. Such a tensor is given by

"(!) =

0

B@
"
xx

"
xy

0

�✏
yx

"
yy

0

0 0 "
zz

1

CA , (4.16)

where the complex matrix elements "
ij

are "
ij

= "0
ij

+ i"00
ij

. The presence of the
off-diagonal elements yields different responses to right (RCP) and left circularly
polarized (LCP) light [50]. The two circularly polarized waves will propagate with
different dielectric constants "

+

and "�, and thus different complex refractive indices
n
+

= n0
+

+ in00
+

and n� = n0
� + in00

�. The relation between the refractive indices and
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matrix elements is given by

"± = "
xx

+ i"
xy

= (n0
± + in00

±)
2. (4.17)

LCP and RCP light waves propagate with different phase velocities and the dif-
ference between "

+

and "� is the origin of the polarization rotation and ellipticity.
One can define a complex MOKE angle (Voigt vector) as

⇥̃
k

= ✓
k

+ i⌘
k,

(4.18)

where ✓
k

is the Kerr rotation and ⌘
k

is ellipticity. The connection between the
Voigt vector and the dielectric tensor components is given by (derivation is given in
Appendix A.1)

⇥̃
k

=
�"

xyp
"
xx

("
xx

� 1)
. (4.19)

Similarly, one can express a complex Faraday angle for polar geometry (at normal
incidence) as [51]

⇥̃
f

= ✓
f

+ i⌘
f

=
!d

2c

i"
xyp
"
xx

, (4.20)

where ! is the frequency of the transmitted light wave and d is the thickness of the
material.

4.1.4 Photoelastic modulator (PEM)

In general, a transparent crystal becomes birefringent under stress. In photoelastic
modulator, this effect causes different polarizations of light to travel at different
speeds when passing through the quartz element. When the quartz element is com-
pressed, the polarization component parallel to the PEM axis travels slightly faster
than the one perpendicular to it. The phase difference at any instant between these
components is called the retardation. When the peak retardation is �/2, the PEM
acts like a half-wave plate, and when it is �/4 - like a quarter-wave plate. Figure (18)
shows how the incoming linear polarization is modulated at �/4 retardation. The
polarization oscillates between RCP and LCP, with linear and elliptical polarization
states in between. By placing the PEM between crossed polarizers, both oriented
at 450relative to the PEM axis, the result is light whose intensity is modulated at
twice the PEM drive frequency.
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Figure 18: Polarization modulation at �/4 retardation.

4.2 Single modulation pump-probe technique

Pump-probe spectroscopy is the most common experimental technique used for
studying the ultrafast dynamics of a material. In this method, a laser pulse train
is split into two separate beams, referred to as pump and probe. A stronger pulse
(pump) excites the sample, while a weaker pulse (probe) is used to monitor the
pump-induced changes in the optical properties. The probe beam is focused onto
the sample so that it is spatially overlapped with the focused pump beam spot.
The probe spot is smaller to ensure that the probe measures a relatively homoge-
neous pump excitation. The changes in reflectivity or transmission of the material
as a function of time delay between the arrival of pump and probe pulses provides
information about the processes happening in the sample. The schematic of a pump-
probe setup is given in Figure 19.
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Figure 19: Schematic of the single modulation pump-probe setup.

In our setup we use a Ti:sapphire laser (KM Cascade) with repetition rate varying
from 100 kHz to 80 MHz with pulse energy up to 40 nJ/pulse. With appropriate
pulse compression, a pulse width of less than 25 fs can be achieved. The pump
beam is chopped in order to modulate pump-induced change in the transmitted or
reflected probe beam power at frequency f

c

. In this way both the pump and probe
beams have a component at the frequency f

c

, but only the modulated component
of the probe beam carries the signal of interest. The mechanical chopper frequency
which modulates the pump beam, serves as the reference for the lock-in amplifier
(Stanford Research SR830 or SR844), which then allows us to detect the component
at f

c

that exists in the reflected probe. In a degenerate pump-probe setup, both
the pump and the probe beams have the same wavelengths. This makes separating
measured probe beam from the scattered pump beam after the reflection from or
transmission through the sample difficult, and results in a significant background
signal on the detector. For materials that yield weak pump-induced changes, this
can be a significant hurdle in achieving a high quality signal.
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4.3 Double modulation technique using the polarization bridge

Figure 20: Double-modulation TR-MOKE setup using polarization bridge for de-
tection.

In this setup, schematically depicted in Figure 20, double modulation can be used
to overcome some of the pitfalls of the single modulation scheme. The chopper now
is in the probe path, and the PEM is in the pump path. To simplify the description
of the setup, the pump and probe paths are discussed separately:

Pump path: The pump goes through a half-wave plate, which rotates the plane
of polarization of the incoming beam parallel to the vertical axis. Next, the light
goes through the polarizer oriented such that only vertically polarized light passes
through, and then goes through the PEM whose axis is oriented at 450 to the vertical
axis. Hence, the difference between the vertically polarizied light and the PEM axis
is 450. The PEM is set to have the quarter-wave retardation, such that the output
beam polarization changes from linear to right circular, then back to linear (now
900 with respect to the initial linear polarization), then to left circular and so on. The
light then travels through a polarizer oriented such that only horizontally polarized
light can pass it. Hence, PEM in this setup is used like a chopper operated at high
frequency (100 kHz) imparting a nearly sinusoidal modulation on the pump beam.
The beam then goes through a quarter-wave plate, which can either preserve the
linear polarization or convert it into circular polarized light. Next, the light passes
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through a beam splitter, with the transmitted portion being dumped, and reflected
component focused onto the sample contained within a magnetic cryostat (Oxford
Instruments magnetostat).

Probe path: The probe light also goes through the half-wave plate and then it
passes through a polarizer oriented such that only the vertically polarized light is
transmitted. Next, it passes through a piece of quartz compensating for the GDD
from the PEM. Next, a second half-wave plate, is used to rotate the plane of polar-
ization. Finally, the probe light is focused on the sample with the same optics used
for the pump beam.

We detect the reflected probe light which contains information on the processes
induced by the pump. The reflected probe is analyzed using a polarization bridge.
The first part of this bridge is a half-wave plate, which rotates the plane of polar-
ization of the probe beam such that its polarization is at 450 (in absence of the
pump and B=0) with respect to the axis of the Wollaston prism. The Wollaston
prism then splits the light into equivalent vertical and horizontal components. Now,
if the polarization coming to a half-wave plate is slightly rotated, the vertically
and horizontally polarized light coming out of the prism will be of slightly different
intensity. This difference is the signal of interest, corresponding to the Kerr rota-
tion. The polarization split probe beams then go to independent channels of the
balanced detector, which subtracts input of channel B from the input of channel A.
The difference (A-B) is then sent to cascaded lock-in amplifiers (see Figure 21).

Figure 21: Cascaded lock-in amplifiers.

In the cascaded lock-in system, the signal, which contains the frequency com-
ponents f

1

(PEM), f
2

(chopper) and f
1

+ f
2

(signal of interest), goes to the first
lock-in, referenced at f

1

. The frequency components of the signal are then mixed
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with an internally generated reference signal at f
1

. The f
1

component in the orig-
inal input is shifted to DC, and the to other two components shift such that:
f
2

! f
2

� f
1

,f
1

+ f
2

! f
2

. One has to choose the parameters of the lock-ins’
low pass filter in order to pass the desirable frequencies. The pass band is primarily
determined by the time constant and ideally the dependence of the signal attenua-
tion with respect to frequency should resemble a step function as much as possible.
This closeness to a step function is set by the dB roll-off of the lock-in. One has to
make sure that the frequency f

2

falls in the pass band by setting the time constant
of the first lock-in ⌧

1

to be sufficiently small, and f
2

to be sufficiently low. Since
frequency of the PEM is much larger then the frequency of the chopper, the output
of the first lock in will contain the DC and f

2

frequency components only. This
signal is then sent to the second lock in where its frequency components are mixed
with a reference signal at f

2

. The output components then are DC-f
2

and DC. The
time constant of the second lock-in (⌧

2

) is set in a way that the pass band is very
narrow. The output signal is then DC, which corresponds to the original f

1

+ f
2

signal.
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5 Results and discussion

5.1 Jahn-Teller driven ferroelectric transition of GaV4S8

In most cases ferroelectricity emerges due to the structurally driven displacement
of ions. However, there are other mechanisms which can lead to ferroelectricity,
including orbital order [52]. Since Jahn-Teller transition leads to long-range orbital
ordering of the system, it can lead to the ferroelectric polarization of the system.
Few ferroelectric Jahn-Teller materials were studied until recently [53, 54]. Ferro-
electricity driven by Jahn-Teller distortion can appear in lacunar spinels, including
GaV

4

S
8

[55, 56]. We conducted Raman and time-resolved differential reflectivity
measurements in order to attempt to determine the phonon modes involved in the
Jahn-Teller ferroelectric transition.

5.1.1 Raman spectrum of GaV4S8

Raman spectroscopy is a technique based on inelastic scattering of monochromatic
light from a sample and measures the quasi-particle excitations, such as quantized
vibrations of the lattice. Raman scattering was discovered by C. V. Raman and K. S.
Krishnan in liquids (1928) and was also reported for crystals by G. Landsberg and L.
Mandelstam [57, 58]. In contrast to the strong elastic Rayleigh scattering, which has
the frequency of the incident light f

0

, inelastic Raman scattering is comparatively
weak and has frequency f

0

± f
m

, where f
m

is, for example, the frequency of a
molecular vibration. In Raman spectroscopy one measures the frequencies f

m

as a
shift from f

0

. The spectral lines corresponding to f
0

+ f
m

and f
0

� f
m

are called
Stokes (excitations are created during this process) and anti-Stokes (excitations
are annihilated), respectively. The basics of inelastic scattering can be explained
classically, which is the approach chosen here.

In the classical description, the oscillating electric field of incident photons is
given by

E = E
0

cos(2⇡f
0

t). (5.1)

This field induces the dipole moment P of the molecule

P = ↵E, (5.2)

where ↵ is the polarizability, which measures the ease with which the electrons
around the molecule can be distorted. Raman scattering occurs because the polzariz-
ability can be changed by the vibrations of the molecule. If ↵ is small, it can be
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extended as a Taylor series in displacements q = q
0

cos(2⇡f
m

t), where q
0

is the
vibrational amplitude of the molecule:

↵ = ↵
0

+

✓
@↵

@q

◆

q0

· q
0

+
1

2

✓
@2↵

@q2

◆

q0

· q2
0

+ ... (5.3)

In the equation (5.3) ↵
0

is the polarizability at equilibrium position.
Plugging (5.1) and (5.3) into (5.2) (considering only the first two terms) one gets

the following expression for the dipole moment:

P = ↵
0

E
0

cos(2⇡f
0

t)+
1

2

✓
@↵

@q

◆

q0

·q
0

E
0

{cos[2⇡(f + f
0

)t] + cos[2⇡(f � f
0

)t]} , (5.4)

where the second and third terms correspond to Stokes and anti-Stokes processes.
The scattered light intensity is proportional to P 2 and E2.

Due to classic considerations, the relation between Stokes and anti-Stokes inten-
sities should be of the following form:

I
Stokes

I
anti�Stokes

=
(f

0

� f
m

)4

(f
0

+ f
m

)4
. (5.5)

The quantum-mechanical approach provides the correction to equation (5.5), and
the new intensity relation is

I
Stokes

I
anti�Stokes

=
(f

0

� f
m

)4

(f
0

+ f
m

)4
exp

✓
�hf

m

kT

◆
. (5.6)

One can determine the temperature associated with the excitation using equation
(5.6).

The small lattice oscillations can be expressed in terms of normal modes. These
modes are independent from each other and their energies are quantized. The quan-
tum of a lattice vibration is a phonon. For crystals with more than one atom in
the unit cell, there are two types of phonons: acoustic and optical. For acoustic
modes, the neighboring atoms are in phase and in the long-wavelength limit they
correspond to the sound-waves. In contrast, the neighboring atoms are out of phase
for the optical modes. There are two types within each mode: longitudinal mode
with displacements parallel to the direction of propagation and transverse mode with
displacements perpendicular to the direction of propagation. Hence, four different
modes exist: transverse acoustic (TA), longitudinal acoustic (LA), transverse opti-
cal (TO), and longitudinal optical (LO). Optical modes with nonzero wave vector
q can be LO or TO, depending on how the displacement is oriented with respect
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to q. If the modes are not polarized, the LO and TO components are degenerate.
Since the LO phonon supports a longitudinal electric field, there is an additional
Coulomb restoring force for the LO phonon modes, and the LO and TO modes are
no longer degenerate - the LO frequency is always higher than TO frequency. The
difference between the longitudinal and transverse mode frequency is called LO-TO
splitting [59, 60]. Optical phonons can interact with light and the active modes can
be infrared (IR) active and/or Raman active . Polar modes are always IR active.
For non-centrosymmetric materials, the modes can be both IR and Raman active.
The activity of the modes is determined by the crystal symmetry. Modes are IR
active if they transform as vectors x, y or z, and are Raman active if they trans-
form as the product of vectors x, y or z (quadratic functions such as x2, x2 � y2

and so on). The activity of modes can be obtained from a character table for the
point group of a particular material. In case of GaV

4

S
8,

the point group is T
d

in the
paraelectric phase (above the JT transition temperature). After the structural tran-
sition at T

JT

, the symmetry reduces to C
3v

(rhombohedral, space group R3m). The
character tables for T

d

and C
3v

are shown in the table 1 and table 2, respectively.

T
d

E 8C
3

3C
2

6S
4

6�
d

Linear functions, Quadratic
rotations functions

A
1

+1 +1 +1 +1 +1 - (x2 + y2 + z2)
A

2

+1 +1 +1 -1 -1 - -
E +2 -1 +2 0 0 - (2z2 � x2 � y2, x2 � y2)
T
1

+3 0 -1 +1 -1 (R
x

,R
y

,R
z

) -
T
2

+3 0 -1 -1 +1 (x, y, z) (xy, xz, yz)

Table 1: Character table for T
d

point group. The first column gives the irreducible
representations of the group. The first row reads the following from left to right:
the notation of the group; its symmetry elements (five of them for T

d

) ; linear func-
tions and rotations (linear functions give information about IR activity); quadratic
functions (give information about Raman activity).

C
3v

E 2C
3

(z) 3�
v

Linear functions, Quadratic
rotations functions

A
1

+1 +1 +1 z x2 + y2, z2

A
2

+1 +1 -1 R
z

-
E +2 -1 0 (x, y) , (R

x

, R
y

) (x2 � y2, xy), (xz, yz)

Table 2: Character table for C
3v

point group. Should be read as the table 1.

The Wyckoff positions of the Ga, V, and S atoms in the paraelectric phases are
4a, 16e, and 16e, respectively. There are 13 atoms per unit cell, thus the number of
normal modes for GaV

4

S
8

is 3N = 3 · 13 = 39. Three of these modes are acoustic

35



(T
2

symmetry) and the rest are optic. Group theory predicts the following optical
modes for T

d

at the gamma point:

� = 3A
1

+ 3E + 3T
1

+ 6T
2

, (5.7)

where A
1

modes are singly degenerate, E are doubly degenerate, and T
1

and T
2

are
triply degenerate, which gives 36 optical modes in total. The modes A

1

, E and T
2

transform like a product of two vectors and are Raman active, as can be seen from
the table 1. After the structural transition T

d

! C
3v

, T
1

modes split into modes A
2

and E, and T
2

modes into modes A
1

and E. The normal modes at the gamma point
predicted by group theory are then

� = 9A
1

+ 3A
2

+ 15E, (5.8)

where the new mode A
2

is singly degenerate and Raman inactive (see table 2). The
Raman tensors corresponding to the active modes were rotated to the basis in which
the experiment was conducted. In our case, the light was scattered from the (111)
crystal facet (as shown in Figure 22) and the normalized basis vectors were

x0 =
1p
2
[11̄0],

y0 =
1p
6
[112̄], (5.9)

z0 =
1p
3
[111].

The measurements were done with the polarization of the incident light along the
x direction, and the scattered light along the x or y direction for the parallel or
crossed configuration, respectively.
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Figure 22: The (111) GaV
4

S
8

sample.

The rotated Raman tensors for modes of the T
d

point group are
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The rotated tensors for the Raman active modes of the C
3v

point group are
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The details of the Raman tensor rotation from cartesian to the new basis are given
in Appendix A.2.

The selection rules for spontaneous Raman scattering are given by

I
s

/
���e

s

· !R · e
i

���
2

, (5.12)

where e
i

and e
s

are the unit polarization vectors for incident and scattered light,
respectively. The allowed phonon modes for both T

d

and C
3v

symmetries are given
in the tables 3 and 4, respectively.

Allowed modes (T
d

)
Cross Parallel

E(2),T
2

(x),T
2

(y) A
1

,E(1),T
2

(z)

Table 3: Allowed phonon modes for T
d

symmetry (cross and parallel polarization
configurations).

Allowed modes (C
3v

)
Cross Parallel

E(x),E(y) A
1

(z),E(x)

Table 4: Allowed phonon modes for C
3v

symmetry (cross and parallel polarization
configurations).

The Raman spectrum (Stokes and anti-Stokes) was measured for different values
of optical density (OD) in cross and parallel polarization configurations, and the
lattice temperature of the sample at every OD was determined from the ratio of
intensities of the strongest phonon peaks in the Stokes and anti-Stokes spectra.
Since the calculated temperatures for cross and parallel polarizations at the same
OD values varied slightly, the average values of the two temperatures were taken.

Figures 23 and 24 show the spectra at 100% transmission (OD=0, 5.3 mW) for
the cross and parallel polarization configurations, respectively. The modes were
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assigned using the calculated selection rules and results recently reported in the
literature (Figure 25, table 7).

Figure 23: Raman spectrum at T=61 K (cross polarization configuration).

Figure 24: Raman spectrum at T=61 K (parallel polarization configuration).
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Since we measured Raman spectra in the backscattering geometry, wave vector
conservation requires

k
s

= k
i

� q, (5.13)

where k
i

,k
s

, and q are the wave vectors of the incident light, scattered light, and
the phonon, respectively. The incident (and scattered) light was along z axis. Thus,
according to the calculated selection rules, in the paraelectric T

d

phase only the
T
2

(TO) phonons should be observed for the cross polarization configuration, and
only the T

2

(LO) phonons for the parallel polarization configuration (see table 3). In
the cross polarization configuration, only the E mode, corresponding to the rotated
Raman tensor E(2), and the T

2

(TO) mode are allowed. The strongest peak in Figure
23 was assigned to the E mode from comparison with literature (Figure 25) and the
fact that it disappears in the parallel configuration. In the parallel polarization
configuration (Figure 24), the selection rules predict modes A

1

and E(1) in addition
to the T

2

(LO) mode. In this case, the modes were assigned through comparison with
literature. The peak positions of the Raman spectra at T=61 K for the cross and
parallel polarization configurations are summarized in tables 5 and 6, respectively.
The peaks observed in our measurements are slightly redshifted in comparison to the
ones reported in [52], which could be caused by the difference in the temperatures
at which the spectra were obtained. The broad T

2

(LO) peak (parallel polarizaton)
at 187 cm-1has a bump at 197 cm-1 which is most likely due to leakage scattering of
a T

2

(TO) mode. A new feature was observed at 300 cm-1 (T
2

(LO)) as a shoulder of
the strongest peak at 278 cm-1(A

1

) in the parallel polarization configuration.

Mode T
2

(TO) E T
2

(TO)
Peak 126 188 279 298 330 363 436position (cm-1)

Table 5: Phonon modes of GaV
4

S
8

observed at 61 K for cross polarization configu-
ration.

Mode T
2

(LO) A
1

T
2

(LO) E T
2

(LO) A
1

A
1

T
2

(LO)
Peak 187 278 300 329 364 397 405 436position (cm-1)

Table 6: Phonon modes of GaV
4

S
8

observed at 61 K for parallel polarization config-
uration.
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Figure 25: Raman spectra for scattering from crystal facets with (111), (011), (001).
Polarization configurations:(111) - parallel; (011) - cross and at 450; (001) - cross
[52].

Table 7: Phonon modes of GaV
4

S
8

reported in literature (observed at 80 K and
theoretically predicted for 0 K ). Geometry of the measurements: scattering from
crystal facets with (111), (011), (001). Polarization configurations:(111) - parallel;
(011) - cross and at 450; (001) - cross [52].
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The spectra at 25 K in the cross and parallel polarization configurations are
shown in the Figures 26 and 27, respectively. Due the reduction of symmetry from
T
d

to C
3v

, one should observe the splitting of the T
1

modes into A
2

and E modes,
and T

2

into A
1

and E. However, we did not observed this splitting and the spectra
did not change significantly, apart from a slight shift of the peak positions and the
new feature at 323 cm-1 (T

2

) forming a shoulder of the peak at 329 cm-1 (E). The
peak positions of the Raman spectra at T=25 K for cross and parallel polarization
configurations are summarized in the tables 8 and 9, respectively.

Figure 26: Raman spectrum at T=25 K (cross polarization configuration).
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Figure 27: Raman spectrum at T=25 K (parallel polarization configuration).

Mode T
2

(TO) E T
2

(TO)
peak 123 188 282 300 333 367 441position (cm-1)

Table 8: Phonon modes of GaV
4

S
8

observed at 25 K for cross polarization configu-
ration.

Mode T
2

(LO) A
1

T
2

(LO) E T
2

(LO) A
1

A
1

T
2

(LO)
Peak 183 284 303 324 333 370 401 409 442position (cm-1)

Table 9: Phonon modes of GaV
4

S
8

observed at 25 K for parallel polarization config-
uration.

In the literature, the peaks at 126 cm-1 and 188 cm-1 (cross polarization, T=61
K) are assigned to be the Jahn-Teller active modes. This was concluded from these
peaks being broad due to strong-electron phonon coupling. The two main factors,
determining the phonon linewidth are the interaction with the other phonons (an-
harmonic terms) and the interaction with the electrons (electron-phonon coupling),
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which depends on the carrier density. During the JT structural transition, the
atoms are displaced from their equilibrium positions which are described in terms
of phonons. Interaction of electrons with these these displacements leads to the
electron-phonon coupling. Since the Jahn-Teller distortion is strongly correlated
with the electron-phonon coupling, the broadness of these peaks insinuate their JT
activity. Moreover, these are the only peaks whose position is changed from higher
to lower wavenumbers with temperature: all other peaks have an opposite behavior.
However, this reasoning is not supported by any observable splitting of these modes
after the transition to the ferroelectric phase. The splitting probably is not observed
because the symmetry change is very weak or the peaks are too broad. Since the
Raman spectra did not provide the explicit evidence of GaV

4

S
8

undergoing the JT
driven ferroelectric transition, the next step was to conduct time-resolved differential
reflectivity measurements, which are discussed in the next subsection.

5.1.2 Differential reflectivity measurements for GaV4S8

Since the spontaneous Raman measurements did not provide conclusive results, we
conducted differential reflectivity measurements in order to see the changes near the
Jahn-Teller transition temperature T

JT

w 42 K. For this measurement the double-
modulation pump-probe technique was used. The measurements were conducted
in the temperature range from 20 to 55 K with 2.5-5 K steps for the (001) sample
(Figure 28). The data was analyzed using a combination of fast Fourier transforma-
tion (FFT) and the Linear Prediction (LPM). The limitation of the FFT is related
to poor resolution and spectral leakage, particularly with short delay scans. LPM
is based on the singular value decomposition. This method was chosen because it
provides an ability to accurately reconstruct of time-domain signal as a sum of de-
caying sinusoids with no a priori assumption on the number of terms. It often yields
more accurate estimates of the oscillator frequencies than FFTs.

The raw signal measurement at T=55 K (which corresponds to the paraelectric
phase of GaV

4

S
8

) is shown in the Figure 29. It can be seen that the reflectivity
decreases and then slowly recovers. Pronounced oscillations are also seen, which are
due to the excitation of coherent phonon modes. Before discussing the oscillations,
the exponential background was subtracted. The fit is given in Figure 30.
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Figure 28: The (001) GaV
4

S
8

sample.

Figure 29: Reflectivity as the function of delay (T=55 K).
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Figure 30: The fitted reflectivity oscillations (T=55 K).

Next, the windowed FFT of the signal was taken. Windowing can be used to
minimize the spectral leakage at the cost of resolution. It is accomplished by mul-
tiplying the signal in the time domain by a window function. The one used here
was periodic Hamming window function, which substantially lowers the level of the
side lobes in FFT. Implementing windowing helps to better distinguish the peaks in
the FFT, especially for the peaks with lower amplitudes. The windowed FFT of the
time-domain signal is shown in the Figure 31. In the FFT, three peaks appear: at
286, 401, and 412 wavenumbers. These values are consistent with the ones obtained
using LPM: the parameters for these modes are given in the tables 10 and 11 for
the paraelectric and ferroelectric phases, respectively.

Since the driving mechanism behind the generation of coherent phonons is im-
pulsive stimulated Raman scattering (ISRS) [61], the corresponding selection rule is
given by

�R

R
_

���e
pump

· !R · e
pump

���
���e

probe

· !R · e
probe

��� , (5.14)

where, e
pump

is the polarization vector of the pump beam, e
probe

is the polarization
vector of the probe beam, and R is the Raman tensor. The tensors were rotated to
the basis:

x0 =
1p
2
[110],
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y0 =
1p
2
[�110], (5.15)

z0 = [001].

The rotation matrix was deduced using the same approach as in the case of
spontaneous Raman measurements. The resulting rotated tensors are given in the
Appendix A.3. Table 12 gives the selection rules, calculated using the equation
(5.14).

After comparing the position of the peaks in the FFT and the values obtained
via LPM analysis with the Raman spectra (our measurements and literature), the
observed phonon modes were determined to be A

1

modes. These were the only
modes appearing well above the noise spectrum for both paraelectric and ferroelec-
tric phases. While the A

1

mode is allowed for both T
d

and C
3v

symmetries, the other
modes allowed by the selection rules were not seen. This is an unexpected result and
could be possibly explained by the missing T

2

(LO) and E modes being considerably
weaker than A

1

mode and below our minimum sensitivity (�R/R ⇠ 10�4).
LPM predicted additional modes at lower wavenumbers which were not given in

the table due to having quite different values in comparison with modes observed
in the spontaneous Raman measurements. For T=55 K, two of these modes were
at 103 cm-1 and 160 cm-1. These modes could possibly be linked to the T

2

(LO)
phonons. As discussed in the Raman subsection, low frequency T

2

modes are most
likely related to the JT transition. The peaks were broad, which indicates the dom-
inance of the electron-phonon coupling term contribution to the phonon linewidth.
The 103 cm-1 and 160 cm-1modes obtained from the LPM analysis could be LO
phonon-optical plasmon coupled modes. It was mentioned before that in the polar
materials the LO phonons carry a macroscopic longitudinal electric field originating
from the displacements of planes of positively and negatively charged atoms. The
optical plasmons also carry a longitudinal electric field. When the plasmon fre-
quency approaches the phonon frequency at sufficiently high carrier densities, it can
couple to the phonon through their respective fields. This coupling results in the
appearance of two repulsive phonon-plasmon coupled modes L

+

(higher frequency)
and L� (lower frequency),whose frequencies are strongly density dependent, with
the L� mode’s frequency approaching the TO frequency at large densities. In con-
trast, the L

+

mode has a parabolic dispersion with respect to the carrier density n,
starting at the LO frequency at n = 0. Hence, for intermediate carrier densities,
the L

+

mode frequency will be above our detection limit, while the L� would have
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lower values than expected in the absence of the plasmon coupling. Nevertheless, it
is unclear why the other T

2

modes and the E modes do not appear in our measure-
ments. The modes do not exhibit any pronounced change with temperature which
could be due to the relative weakness of the rhombohedral distortion [52].

Figure 31: Fourier transform of the signal (T=55 K).

Wavenumber (cm-1) Frequency (THz) Decay Phase Amplituderate (ps-1)
286 8.6 3.0 3.1 4.0 · 10�4

403 12.1 15.4 1.1 4 · 10�5

411 12.3 3.7 1.0 1.5 · 10�4

Table 10: Parameters of the fitted oscillators (T
d

symmetry, T=55 K).

Wavenumber (cm-1) Frequency (THz) Decay Phase Amplituderate (ps-1)
286 8.6 3.2 1.37 3.3 · 10�4

403 12.1 1.7 -1.2 3.1 · 10�5

411 12.3 7.1 -1.2 1.4 · 10�4

Table 11: Parameters of the fitted oscillators (C
3v

symmetry, T=25 K).
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Allowed modes
T
d

(paraelectric phase) C
3v

(ferroelectric phase)
A

1

,E(1),T
2

(z) A
1

(z),E(x)

Table 12: Selection rules for the reflectivity measurement.

Another interesting observation was the sign reversal of the pump-induced change
in the reflectivity (Figure 32). The temperature dependence of the reflectivity ex-
trema is given in Figure 33. This behavior can be caused by the structure changes in
the region close to T

JT

due to existence of the multiple domains in GaV
4

S
8

. Previ-
ously, it was shown that for multi-domain perovskite structures, the lattice param-
eters undergo splitting at the phase transition related to the Jahn-Teller distortion.
This splitting is observed because the material has several domains and it leads to
the change in volume of the crystal. M. Guennou et al. showed the dependence of
the phonon mode frequencies with the change in the volume for BiMnO

3

[62]. Since
the lattice constants go back to their initial behavior after passing the region of
interest, the volume changes only exists in the small window around the distortion
parameter. Hence, the modes’ frequencies go back to their behavior before the phase
transition too. Such change in volume may occur in GaV

4

S
8

, causing the reflectivity
sign to flip in the region around T

JT

.
Lastly, Figure 34 shows the temperature dependence of the 286 cm-1 peak ampli-

tude. It can be seen that it significantly changes when the temperature approaches
the T

JT

value, which is consistent with the distortion. However, it should be noted
that since it is a fully symmetric mode, it cannot be the JT phonon.
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Figure 32: Comparison of the reflectivities for different temperatures.

Figure 33: Extrema of reflectivities as the function of temperature.
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Figure 34: The change of the amplitude of 286.6 cm-1peak with temperature.

5.2 Magnetization dynamics of GaV4S8

Time-resolved magneto-optical Kerr measurements for (111) GaV
4

S
8

sample (Figure
22) were conducted using the double-modulation technique described in section 4.3.
The probe beam was chopped at 787 Hz, and the pump beam was chopped with the
PEM at 100 kHz (quarter-wave retardation). The sample in the magnetic cryostat
was cooled down below the Néel temperature T

c

= 13 K. As can be seen from Figure
16c, staying in the temperature region between 10 and 12 K, one can observe the
magnetization spin dynamics in cycloidal and skyrmion magnetic phases by sweeping
the magnetic field from 20 to 120 mT. The pump-induced Kerr rotation dependence
on delay for the temperatures 10,11, and 12 K with varying magnetic field is given
in Figure 35.
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Figure 35: Kerr rotation as a function of delay at different temperatures and mag-
netic fields.

It can be seen that all the curves have a dip at approximately 0.75 ns which is
most likely an artifact caused by the mechanical instabilities in the system. However,
the Kerr rotation visibly changes and picks up some structure with varying magnetic
field, especially at T=11 K and T=12 K. Hence, the next step was to selectively
analyze a few features using LPM in order to see wether we observed magnetization
spin dynamics which can be linked to one of the two possible magnetic phases in
this region. The chosen features were corresponding to T=11 K, B=40 mT and
T=12 K, B=100 mT with frequencies 5.2 GHz and 3.9 GHz, respectively. For the
case of the feature T=11 K, B=40 mT, we are very close to the boundary between
the skyrmion and cycloidal phases. If compared to Figure 36, the corresponding
frequency indicates that it is the cycloidal excitation. The feature T=12 K, B=100
mT corresponds to the skyrmion phase.
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Figure 36: Color-coded plot of the transmission spectra in the frequency vs. mag-
netic field plane for T = 11 K [63].

Ethlers et al. observed two separated modes at 5 and 15 GHz in the cycloidal
phase [63]. Such a splitting at low values of B arises from a competition between
the DM interaction and the crystal field. However, we observe only the lower fre-
quency mode in the cycloidal phase. As can be seen from Figure (35),there are
only two periods of the oscillations in the measured time interval. Thus, a double
pass method must be used in order to properly extract the oscillation frequencies.
When increasing the magnetic field to 100 mT, we cross the phase boundary to
the skyrmion phase and observe a Kerr rotation oscillation corresponding to one
of the skyrmion modes. In the Figure 36a it can be seen that the low frequency
mode at 5 GHz splits into two modes after the phase boundary is crossed, with
the lower frequency mode (approx. 4 GHz) ascribed to a breathing mode and the
higher frequency mode (approx. 7 GHz) to a CCW mode. In our measurement for
the magnetic field B=100 mT at T=12 K, the frequency was determined to be 3.9
GHz, which is very close to the expected breathing mode frequency. However, we
did not observe the CCW mode. Increasing the magnetic field to the values above
150 mT should allow for probing ferromagnetic phase. We did not measure above
120 mT, but the next step will be two measure in all magnetic phases existing for
GaV

4

S
8

at low temperatures. Moreover, the (111) sample, having two skyrmion and
two cycloidal phases due to domain structure of the material, will be the focus of
the future experiments.
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5.3 Magnetezation dynamics of Cu2OSeO3

The magnetization dynamics of Cu
2

OSeO
3

were studied using the double-modulation
technique proposed by Koopmas [64]. The measurements were conducted in a polar
MOKE geometry. The Ti:Sapphire oscillator was cavity dumped at 2MHz delivering
on a sample fluence of 40 nJ/pulse. The pump pulse was right circularly polarized
and th polarization of the probe was modulated by PEM at 50 kHz. The probe
beam was then detected after passing through an analyzer. The sample was cooled
down to 57.7 K, which corresponds to the Skyrmion Phase. The magnetic field B
was applied perpendicular to the sample surface and its value was varied from 80 to
140 mT.

Figure 37 demonstrates the dependance of the Kerr rotation on the time delay.
The obtained raw data for different magnetic field values was first smoothed using
a moving average and then fit with a sine wave. Theoretical studies claim that spin
dynamics in the skyrmion phase depend on the magnetic filed orientation.: for an
in-plane field the CW and CCW rotational modes should be observed and for an
out-of-plane field-the breathing mode should be the only accessible mode [40]. Due
to our geometry we expect to see only the breathing mode.
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Figure 37: Kerr rotation as a function of delay.

The oscillations are present for values of applied field B in the range of 100-140 mT
and disappear at 80 mT (B values and corresponding frequencies f are given in table
13). The corresponding frequencies of the breathing mode for each field are in the
GHz range and decrease with higher magnetic field values (Figure 38).These results
are consistent with the previous studies by N. Ogawa et al., where the magnetization
dynamics were induced by the inverse Faraday effect [25]. However, the frequencies
are lower (1.7 GHz from the inverse Faraday measurement). This could be caused
by the deviation from the T=57. If the real sample temperature is on the edge of
the skyrmion phase, the mode frequency diminishes [25] . The values of applied
magnetic field in our case is higher than the ones reported by R. Ogawa (20 mT)
and R. Versteeg [36] (magnetic field varying from 20 to 50 mT for the skyrmion
phase) and this is currently not well understood.
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Figure 38: Oscillation frequency as a function of applied magnetic field.

B (mT) f (GHz)
140 0.81
120 0.93
100 0.97
80 -

Table 13: Applied magnetic field values B and corresponding frequencies f .
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6 Conclusions and outlook

During the course of this work, properties of skyrmion materials were probed with
different techniques. While the main goal was to observe the magnetization dynam-
ics using the TR-MOKE method, we also attempted to probe the coherent phonon
modes of GaV

4

S
8

which are involved in the Jahn-Teller distortion. Spontaneous
Raman spectra for different polarization configurations were measured for the tem-
perature range around the transition temperature T

JT

. Surprisingly, no splitting
of the modes was observed, as was expected from group theory. However, some
of the observed phonon peaks showed behavior which might indicate that they are
JT-active. This can be due to the weakness of the JT effect: the change in structure
is so small that T

2

peaks are dwarfed by the stronger A
1

and E modes.
Since the spontaneous Raman measurements did not provide conclusive results,

we then conducted differential reflectivity measurement using the double modula-
tion pump-probe technique. The results of this experiment also did not show any
evidence of mode splitting due to a change in symmetry. Nevertheless, we observed a
sign change of the pump-induced reflectivity. This behavior could originate from the
multi-domain structure of GaV

4

S
8

, which leads to change in the volume of the crys-
tal during the structural transition. This change of reflectivity sign gives evidence
that the material actually undergoes the structural phase transition. Combining
these observations with the Raman results, it can be concluded that the reason why
we did not observe the splitting or shifts of the modes when going from higher to
lower symmetry is that these JT-active T

2

(LO) (only longitudinal T
2

phonons were
allowed by selection rules in case of reflectivity measurement) are actually very weak
in comparison to the other modes.Thus, we have to try something else in order to
try see the change predicted by the group theory. For instance, we can try to use the
reflective electro-optic sampling (REOS) technique, which allows to probe T

2

(LO)
modes selectively.

Next, the skyrmion dynamics GaV
4

S
8

of and Cu
2

OSeO
3

were studied. Observed
spin dynamics were consistent with the results reported in literature, but for Cu

2

OSeO
3

,
the signal-to-noise ratio was too low to determine the oscillation frequencies accu-
rately. Additionally, we could not observe all possible modes because there were only
a few oscillatory periods over the measured time. In order to increase the this in-
terval, we need to extend our measurement range using a double pass configuration.
Moreover, when the magnetization dynamics was measured, the experimental setup
proposed by Koopmans was originally utilized.This technique suffered from an over-
all high noise level. In the future, TR-MOKE measurements for Cu

2

OSeO
3

will be
made using the polarization bridge for detection. However, mostly we are interested
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in continuing experiments on GaV
4

S
8

, since the selection rules are not established
for this material, in contrast to Cu

2

OSeO
3

.So far, we have seen that we observe the
breathing mode for out of plane magnetic field, which coincides with what we expect
for Cu

2

OSeO
3

at the same conditions. Still, we have to conduct measurements in all
possible configurations to draw any conclusions about the selection rules.
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A Appendix

A.1 Derivation of expression for Voigt vector as a function of

dielectric tensor elements

Complex refractive index is given by

n± =
p
"
xx

± i"
xy

. (6.1)

Complex reflection coefficient can be expressed as

⇢± = r±e
i✓± =

n± � 1

n± + 1
, (6.2)

where ✓± is the phase difference between incident and reflected light.
The ration of reflection coefficients of right circularly (RCP) and left circularly

(LCP) polarized light yields

⇢
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where Kerr rotation and ellipticity are given by
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Expanding (6.3) for small ✓
k

and ⌘
k

, we get
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Considering the ratio between the reflected electric fields for RCP and LCP light
, we have

E
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E
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⇢
+
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, (6.6)

whereE
in,±is the electric field of incident light.

If we plug (6.1) and (6.2) into (6.6), we will have
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Expanding (6.7) for small "
xy

, using
p
1 + x ⇡ 1 + x

2

,we get

⇢
+
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2i"
xyp

"
xx
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xx

� 1)
+ 1. (6.8)
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Comparing (6.5) and (6.8) gives expression for the Voigt vector:

⇥̃
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= ✓
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xx

("
xx

� 1)
. (6.9)

A.2. Rotation of the Raman tensors for a (111) sample

Raman tensors in cartesian basis for the T
d

symmetry are given by

R(A
1

) =
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B@
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0 a 0

0 0 a
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CA , R(E(1)) =
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0 b 0
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Raman tensors for the C
3v

symmetry are

R(A
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0
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0 a 0
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0 c d

c 0 0
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R(E(y)) =

0
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c 0 0

0 �c d

0 d 0

1

CA .

In order to rotate these tensors, one can construct the direction cosine matrix
(DCM) which gives the Euler angles. The DCM is given by

DCM =

0

B@
Xx Xy Xz

Y x Y y Y z

Zx Zy Zz

1

CA , (6.12)

where X, Y, Z gives a new basis and x, y, z gives a cartesian basis. The Euler
angles are then be calculated as
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' = arctan

✓
Xy

Xx

◆
, ✓ = �arcsin(Xz), = arctan

✓
Zy

Zz

◆
, (6.13)

where the angles ', ✓, correspond to the axis x, y, z, respectively.
The matrices for rotation around x, y, and z are given by

M
x

=

0

B@
0 0 0

0 cos' �sin'
0 sin' cos'

1

CA ,M
y

=

0

B@
cos✓ 0 �sin✓
0 0 0

sin✓ 0 cos✓

1

CA , (6.14)
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Rotation matrix is then calculated as

M = M
z

M
y

M
x

. (6.15)

The resulting rotation matrix yields:
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Finally, one can calculate the rotated Raman tensors using

 !
R

new

= MT

 !
RM. (6.17)

A.3. Rotation of the Raman tensors for a (001) sample

Rotation matrix is calculated as described in A.2. The result yields:
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Rotated Raman tensors for the T
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symmetry are given by:
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Rotated Raman tensors for the C
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symmetry are given by:
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