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Abstract

Thermoelectric materials are at the forefront of the energy revolution. These materi-

als represent one of the best solutions to recover the energy lost in the form of heat.

Efficient thermoelectrics require good electrical conductivity and low thermal conduc-

tivity. PbTe is an ideal thermoelectric because of it’s unusually low thermal conduc-

tivity. However the origins are still in question. In this work we use ultrafast white

light pump-probe spectroscopy to demonstrate coherent squeezed states involving TO

and LA phonons. In addition to that, we also investigate electron-phonon coupling

mechanisms, that supports the theory of TO and LA mode softening.
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Chapter 1

Introduction

U
nderstanding the underlying microscopic mechanisms invloved in ultrafast

carrier thermalization and energy relaxation is one of the key factors in im-

proving the speed of information processing systems may lead to faster elec-

tronics. For example, a typical transport time of a majority charge carrier from the

source terminal to the drain terminal via an applied gate voltage in a field effect tran-

sistor is about a picosecond. Thus, understanding the possible scattering mechanisms

that could be involved during transport can have a major impact on improving pro-

cessing speeds. Understanding ultrafast dynamics however is not a semiconductor/-

condensed matter specific problem; the study of certain reaction dynamics of chemical

processes or even microscopic dynamics of biological systems [28] are also examples

of topics that can be addressed using ultrafast techniques. As such, we need a tool to

study the dynamical aspects of these ultrafast microscopic processes. This should mo-

tivate us towards spectroscopic techniques that can study the material characteristics

on a time domain basis.

Time-resolved methods have their origins as early as the 1870’s. One of the notable

methods involved time lapse photography, famously applied to the problem of a trotting

horse. The question was whether a trotting horse had all of it’s legs in the air at any

time during the course of it’s motion. This was answered through a series of time lapse

shots of the trotting horse which was later stitched together to find out that it indeed

had all of it’s legs in the air (see figure 1.1) at a particular instance of time! Later,

during the 1950’s, this method was extended to the study of the time-resolved emission

spectrum of an electric discharge using a stroboscopic technique [4]. The idea was to

use a rotating slit to photograph the discharge and record this on a photosensitive

tape. With the advent of pulsed lasers during the 1980’s, time-resolved spectroscopic

techniques have evolved to study processes that happen on a femtosecond timescale.

1
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Figure 1.1: Muybridge’s The Horse in Motion,1878 [47]. Notice the Horse flying in
frames 2 and 3.

Pulsed lasers provide excellent temporal resolution, limited by the pulse width itself,

on the order of 10−12 s to 10−18 s [11][43]. One of most the popular time resolved

methods is pump-probe, which is presented in figure 1.2.

Figure 1.2: A typical reflection geometry pump-probe setup. τ corresponds to the
time delay between the pump and the probe beams, as introduced by the delay
stage. The pump beam excites the sample while the probe (less intense) measures

the changes as a function of τ .

A typical pump-probe setup consists of a pump pulse and a probe pulse* derived from

a single pulsed laser, with temporal widths ranging from picoseconds to femtosec-

onds. These pulses are focused onto the sample surface on the same spot, with a large

pump:probe spot size ratio in order to probe a homogeneously excited region. Typical

systems have a solid-state laser pumping Ti:Sapphire oscillator cavity to produce an

800nm pulsed output. As mentioned earlier, the two beams can be derived from the

*When the pump and probe pulses are in the same wavelengths, this method is called a degenerate
pump-probe, otherwise the method is referred to as non-degenerate pump-probe. See for example [41]
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same laser source by use of a beam splitter which is typically the case. Alternatively,

one can also use two laser systems operating synchronously, producing fixed delays

between the two pulses (see for example [42]). As the name suggests, the pump beam

perturbs the sample and the probe is used to investigate the pump induced effects in

the material. This can be done by probing the changes associated with the material

properties such as the reflectivity(transmitivity). In addition to pulsed lasers, a central

feature of pump-probe experiments is the delay stage which introduces a variable tem-

poral delay between the pump and probe pulses, much smaller than the pulse width.

Both of these are necessary to achieve the temporal resolution required to study ultra-

fast processes and thus jointly set the minimum temporal resolution. An illustration of

these details is found in appendix A .

As pump-probe techniques are a powerful tool to understand the carrier dynamics,

applying this to thermoelectrics could prove to be fruitful. Due to increasing energy

demands and energy waste (partly in the form of heat), energy recovery is important.

In this regard, thermoelectrics can be used to recover wasted heat. This may be seen as

follows. Thermoelectrics are materials that convert heat into usable electrical energy.

Figure 1.3 shows a typical thermoelectric generator consisting of n-type and p-type

thermoelectric materials. A temperature gradient ∆T across the material results in the

Figure 1.3: A thermoelectric generator [44].

induced potential gradient (Eemf ) and hence the observed current. This corresponds to

the Seebeck effect,

Eemf = −S∆T . (1.1)

Here S is the Seebeck coefficient. Clearly, efficient functioning of such a device requires

poor thermal conductivity to maintain a steady temperature gradient and a good elec-

trical conductivity for the non-dissipative flow of current. Accordingly, thermoelectrics



Chapter 1. Introduction 4

are characterized by thermoelectric figure of merit [44] (ZT) which characterizes the

thermoelectric conversion efficiency;

ZT =
S2T
ρκ

, (1.2)

where κ is the thermal conductivity of the material, ρ corresponds to the material resis-

tivity, S is the Seebeck coefficient, and T the temperature respectively. T is multiplied

on either side to make ZT dimensionless. Since thermal conductivity involves heat

transport and the associated carrier dynamics, it would make sense to understand the

underlying mechanisms to optimize ZT.

In this regard, PbTe happens to be an excellent candidate. With a face centered cu-

bic (FCC) lattice structure, the material has an exceptionally low (2 Wm−1K−1 at 300K)

thermal conductivity [13]. In fact, under appropriate doping, it has a large Seebeck co-

effiecient, excellent electrical conductivity and as such, a large ZT in the range of 1.4 to

3.4 [44] [25]. In general, ZT can be tuned by changing carrier concentration levels (n),

effective mass (m∗), electronic (κe) and, lattice thermal conductivities (κl) †. The com-

plexity involved has to do with the fact that all of these parameters are inter-related

and they should be optimized simultaneously to achieve maximum ZT [39]. Recent in-

elastic neutron scattering (INS) experiments have revealed that the exceptionally low

lattice thermal conductivity (κl) for PbTe may be due to an anharmonic interaction be-

tween TO and LA phonons in the material [13]. A major new assertion is that the LA

mode softens due to the interaction with the soft TO mode. Thus, it would be inter-

esting to study the material using time-resolved methods to investigate these phonon

and carrier interactions to better understand the scattering dynamics on ultrafast time

scales, and determine if LA mode screening can be seen.

In this experiment, we investigate the carrier relaxation and phonon dynamics in un-

doped PbTe by means of pump-probe spectroscopy. In this thesis, we report our ob-

servations on PbTe detailing the existance of coherent oscillations in reflectivity asso-

ciated with phonon excitations. Further, we study carrier relaxation dynamics which

demonstrate unusual e−-phonon coupling that manifests unexpected temperature de-

pendencies that deviate from conventional semiconductors.

†There are multiple ways to tune this; alloying/creating vacancies, usage of complex structures or
even, multiface composites [39].



Chapter 2

Theoretical Background

2.1 Ultrafast Charge Carrier Dynamics of Semiconductors

U
ltrafast carrier dynamics in essence involves momentum and energy relax-

ation of the material from a non-equilibrium state during photoexcitation to

an equilibrium state that exists in the absence of photoexcitation. This of

course happens in accordance with the principle of conservation of energy and mo-

mentum.

In a semiconductor, when carriers are excited by pulsed radiation, both the electrons

and the lattice absorb energy from the radiation. Subsequently, a non-equillibrium

state is created between these systems due to their different specific heat capacities.

The electronic specific heat is smaller than the lattice specific heat, and thus, the elec-

trons are higher in temperature as compared to the lattice after the excitation process.

Absorption of energy by electrons corresponds to a vertical interband transition lead-

ing to the creation of a hole in the valence band for every electron that populates the

conduction band. This is followed by elastic and inelastic scattering processes between

carriers typically occuring over 100’s of femtoseconds (fs), to achieve momentum ran-

domization and energy transport. This is followed by a quasi-equilibrium statistical

distribution for the carriers. From here, the electron-zone center optical phonon inter-

actions (≤ 1 ps), optical phonon-acoustic phonon interactions (8 ps-20 ps) and, e−-hole

recombination processes (≥ 1 ns) occur and, eventually the system attains equilibrium.

In figure 2.1, we provide a graphical summary of these processes are described. The

time scale of these ultrafast processes in semiconductors are found in Table 2.1.

There are multiple approaches to model charge carrier dynamics. A microscopic de-

scription includes the density matrix formalism involving optical bloch equations de-

scribing time varying ensemble populations due to perturbation by the pump pulse [36] .

5
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Figure 2.1: Ultrafast dynamics in a semiconductor, a hierarchy of events. A delta func-
tion distribution corresponding to the excitation energy results upon perturbation by
the pump beam. This is followed by thermalization processes (momentum random-
izations) that finally drives the system to equilibrium Fermi-Dirac (e− and holes) and
Bose-Einstien distributions (phonons), nevertheless, the lattice and carrier tempera-
tures don’t match yet. As a last step, the temperatures between these systems equili-

brate (through emission of phonons) to attain ground state [31] .

One of the popular mean field approaches includes, for a non-magnetic system, a

two temperature model which is essentially a set of coupled differential equations in

temperature for the subsystems involved and, based on the strength of the coupling

between these subsystems, the relaxation times so determined vary accordingly (this

mostly models the heat flow dynamics/ultrafast thermal response in the material, see

for example [8] ). The latter model will be discussed in section 2.1.4 .

2.1.1 Interband Transitions in Semiconductors

Absorption edge for semiconductors typically fall in the near-infrared and visible re-

gions of the spectrum. The absorption spectra of PbTe is shown in figure 2.2. For PbTe
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Table 2.1: Time order of Ultrafast processes in Semiconductors.

Time Scale Relevant Process Remark

10-100fs
Optical excitation of carri-
ers through interband transi-
tions

Excitation time scale is pro-
portional to the pulse width

10-100fs Coherent regime -

<200fs

Nonthermal regime, mostly
momentum randomizations
occurs through e−−e− scatter-
ing

The system is in a non-
equilibrium state, cannot be
described by equillibrium
distribution functions yet

100fs-ps
Hot carrier regime, e− − e−
scattering and e−-phonon
scattering begin to happen

The carriers can be described
by a well defined temper-
ature by now, distribution
functions are well defined in
this regime

ps-µs
Isothermal regime, domi-
nated by e− − h recombina-
tions

The sytem on the whole at-
tains an equilibrium temper-
ature; Lattice and the carrier
sub-system temperatures are
equalized

single crystal samples (curves A and B in figure 2.2), the absorption maximum is in the

UV-visible and has an absorption edge at 4 µm.

The infrared absorption is related to the excitation of vibrational degrees of freedom

of the lattice while the UV-visible absorption in semiconductors (including PbTe) have

to do with the interband transitions across the band gap by the valence band electrons.

In fact, as the absorption edge defines the energy threshold at which the semiconduc-

tor starts absorbing light, this approximately coincides with the material band gap.

For example, 4 µm corresponds to PbTe bandgap and this is also observable from the

absorption spectra in figure 2.2.

Interband transitions are governed by Fermi’s golden rule which is an application of

time-dependent perturbation theory for transitions between continuum of states in the

valence band |Ψi〉 (initial) to continuum of states in the conduction band |Ψf 〉 (final).

To first order [17],

Wi→f =
2π
~

.|〈Ψik|H′ |Ψf k′ 〉|2.g(E), (2.1)
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Figure 2.2: Absorption coefficient as a function of wavelength for thermoelectric semi-
conductor material PbTe. As discussed earlier, noticeable is the absorption maximum
in the UV-visible (A,B). A-D are the results by different authors on crystals (A,B) and

thin films (C,D) [38].

whereWi→f corresponds to the interband transition probability between the state |Ψik〉
in the valence band to the state |Ψf k′ 〉 in the conduction band. i and f label the initial

and final state band index corresponding to valence and conduction bands, respec-

tively. k and k
′

label initial and final momentum state of the e− within the bands i and

f, respectively. g(E) represents the joint density of states at the incident photon energy E,

which is the probability that the initial and final states that are involved are available

for transition/occupancy. H′ is the Hamiltoninan that couples the states involved in

the transition. For condensed matter systems, specifically for crystalline solids with

Bravias lattices, the electronic states(in position space) are described by Bloch func-

tions,

Ψnk(r) = e−ik.r.Unk(r), (2.2)

where n labels the band index (i and f in the earlier discussions), k represents the mo-

mentum state within the band n. Unk(r) is the wave function bearing the symmetries of

the atomic orbitals involved and modulates the plane wave solution. This function has

the periodicity of the lattice. Intuitively, one can imagine the transition from free elec-

tron gas model, those which have planes waves as a solution, to electrons in a periodic

potential of the lattice that introduces semi-localization for electrons and the subse-

quent modulation of the plane waves. The periodicity is reflected by the periodicity of
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the lattice potential itself*. Thus, based on the functional form of Unk and H′ , one can

deduce selection rules for driving perturbative interband transitions which is evident

from the following equation,

|〈ik|H ′ |f k
′
〉| ∝

∫
d3rU ∗ik(r).H

′
.Uf k′ (r) . (2.3)

Depending on the symmetry of Unk and H′ , the above integral can have non-zero val-

ues (in mathematical terms, this should be an even inetgral).

Figure 2.3: Left: Band structure of GaAs. GaAs has a direct band gap of 1.42eV(Eg )
which also defines the absorption edge. Right: A comparison of α for GaAs and Si.
Si has a direct gap at the Γ of 3.4eV and an indirect band gap of 1.12eV. Noticeable
is the beginning of the absorption starting from right around ≈ 1.1eV, as somewhat a
smooth absorption profile in contrast to GaAs which has a roughly step-function like
behaviour. The smoothness has to do with phonon assisted transitions that impart big

changes in k, that make the transitions still possible at < Γ -point energies [17].

These transitions could occur across direct or indirect band gaps depending on the ma-

terial. Materials which have the conduction band minima and valence band maxima

at the same k constitute direct gap materials and those for which they do not coincide

at the same k are indirect band gap materials. Indirect band transitions are usually

phonon assisted as the k associated with photons cannot bring about big changes in

the electronic momentum. Thus, it is clear that phonon populations could play a de-

ciding role in absorption features beyond the absorption edge for indirect gap materi-

als. A mere comparison between these two types of semiconductors can reveal a great

deal of information about the electronic band structure. As an example, the effects

due to differences in band structures have been shown in Figure 2.3 for prototypical

semiconductors, GaAs and Si.
*Simplest of models in this regard(of e−’s in periodic potential) include, for example, the Kronig-

Penny model, of electrons in periodic square well potential.
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2.1.2 Relaxation Schemes

Once the conduction band is populated, the system is in non-equilibrium state. En-

ergy re-distribution among the electronic and lattice subsystems is required to relax

the system towards equilibrium. Each of these subsystems have their characteristic in-

teraction time scales to distribute energy within and between the subsystems. A brief

summary of the relaxation scheme is already discussed in Figure 2.1 and the introduc-

tion that followed. Figure 2.4 shows the general order of processes once the carriers are

excited, considering GaAs as an example. Also shown is the evolution of phonon pop-

ulation, leading to an eventual energy relaxation of the material to the ground state.

Figure 2.4: Left: Energy relaxation in GaAs. 1 signifies photo-excitation, followed
by inter-(4− 6) and intravalley (2− 3) inelastic scattering generating Optical ((2)) and
acoustic phonons ((3)). 7 is an intravalley relaxation of the hole population. Right: En-
ergy distribution order in the lattice sub-system. As can be seen, high energy optical
phonons so generated (see figure on the Left) scatter off low energy ones and eventu-

ally the lattice system reaches an equilibrium temperature [31] .

The electronic subsystem cools down rapidly (≈ 100 f s) by inelastic collisions between

the constituent electrons and reaches a quasi-equilibrium temperature (Te), greater

than the lattice temperature (Tl)†. This state is characterized by Fermi-Dirac distri-

bution. The quasi-equilibrium breaks down due to interband transitions (≈ 1 ps) that

follow by the emission of zone center longitudnal and transverse optical phonons (e−-

LO and e−-TO interactions). This is followed by optical phonon-acoustic phonon inter-

actions as well as e−-transverse/longitudnal acoustic phonon (e−−TA/LA) interactions

which happen on similar time scales (≈8 ps-20 ps).

Intervalley scattering accounts for a major portion of momentum transfer as this in-

volves large q-vector phonons (LA/TA) while intraband scattering can emit zone center

phonon modes with small q-vector phonons (LO/TO). In addition, relaxation can also

†The fact that Te > Tl corresponds to the system in quasi-equilibrium; eventually Te and Tl should
reach equilibrium temperature over time and hence, initial equilibrium state for electronic subsystem is
only a momentary one.
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occur through inter-zone scattering which involves the transfer of energy and momen-

tum across adjacent brillouin zones‡. All in-elastic/elastic scattering processes (ex-

cluding the electron-electron scattering) constitute coupling between electronic and

phonon sub-systems§. The energy transfer time scales vary based on the coupling

strength between these subsystems. The relaxation scheme discussed here describes

the back bone of ultrafast carrier recombination processes in a photoexcited semi-

conductors. There can also be other processes such as Auger recombinations, exciton

shielding and, hot carrier effect that can prolong the relaxation process in a semicon-

ductor (details of these processes can be found in [31]).

Given the unique thermal conductivity properties of PbTe, it makes sense to discuss the

possible mechanisms of carrier-phonon and phonon-phonon interactions, as well as the

kind of phonon modes involved and the corresponding interaction features. This is the

subject of the section that follows (the discussion in the subsequent section is adapted

from [3]).

2.1.3 e−-Phonon Interactions

For an ideal case of a crystalline condensed matter system, the Hamiltonian with Born-

Oppenheimer approximation¶ maybe written as,

H =Hions(Rj) +He−(ri,Rj0) +He−−ion(ri,δRj)︸             ︷︷             ︸
electron−phonon

, (2.4)

where Rj and Rj0 correspond to jth ionic position and equilibrium ion position, re-

spectively, while ri ’s and δRj ’s represent ith electronic position and displacement of the

jth ion about it’s equilibrium position Rj0. Of interest to us is the He−−ion Hamilto-

nian. Zone center interactions primarily happen through deformation potentials and

phonon mode induced polarization field-electron charge interactions. Zone edge inter-

actions involves mostly the former interaction type. To first order,He−−ion (considering

the Hamiltonian expectation value) maybe written as,

‡These are also called an Umklapp process
§Spin relaxation is also a part of the energy exchange subsystem, specifically for magnetic materi-

als(See for example, the Three Temperature Model [22]). This would have been a possible pathway in case
PbTe were doped with a magnetic impurity; PbTe:Ti is magnetic [46].

¶This is the approximation that the ionic motion feels the average adiabatic potentials due to electron’s
and the electronic motion is in phase with that of ion cores; thus, in principle, from the e− perspective,
the ions are practically stationery.
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He−−ion ≈
[
∂Enk

∂Rj

]
Rj0

.δRj . (2.5)

In arriving at the above equation, it is assumed that the electrons instantaneously re-

spond to the ionic motion. Enk represents the energy of an e− in nth band with wave

vector k. Such changes in electronic energies are possible through lattice deformation

introduced by phonons. This is apparent in the case of LA and TA phonons which are

strain wave deformation of the lattice. This is most apparent in the case of LA and TA

modes due to do the fact that they represent in-phase motion of the basis atoms (this

approximation is valid only near the zone center) within an unit cell across the lattice

while the optical branch represents out of phase motion (also close to zone center) of

the basis atoms within unit cells.Thus optical modes can be approximated as micro-

scopic deformation of the lattice‖. Accordingly one can associate a deformation poten-

tial to the phonons, which is also proportionality factor to the corresponding global

band structural change in the material. In general, the material strain is the symmetric

tensor of the lattice displacement gradient, given by

Sij =
[
∂(δRi)
∂Rj

]
symmetric

=
1
2

(
∂δRi
∂Rj

+
∂δRj
∂Ri

)
. (2.6)

Applying group theory tells us that Sij is a reducible representaion of the strain tensor.

Thus Sij maybe expressed as a sum of Γ1, Γ3 and Γ4 irreducible representations. Γ1−5

represent the irreducible representation of the crystalographic point group SGP
** of a

crystal at the Γ point. Γ1 represents relative volume change (δV /V ) component of Sij ,

Γ3 and Γ4 represents shear component of Sij due to uniaxial stress along [100] and

[111] directions respectively. Equation (2.5) maybe used to deduce Hamiltonians for

interaction involving deformation potential.

We first consider zone center deformation potential interactions, with long wavelength

acoustic and optical phonons:

• e−-LA interaction Longitudinal modes corresponds to compressional waves in

the material and these have δRj’s along the direction of the wave propagation

q. On considering a periodic disturbance of amplitude δR0, with an oscillation

‖The analogy of macroscopic and microscopic oscillations is an approximate one and cannot be gen-
eralized; this can be seen as an approximate case of solution to 1D diatomic oscillator model, for example,
see[s].
**SGP is a set of all symmetry operations on the crystal that preserve it’s structure. A crystallographic

point group can be mapped to a group consisting of matrix representation of the elements of SGP which
forms the representation of the point group. These representations can be reducible or irreducible based
on their structure. For more details, one can refer [? ]
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frequency ω, equation (2.5) yields,

Sij =
1
2

[qi .δRj0 + qjδRi0].cos(q.r−ωt) = qiδRi0 = Sii . (2.7)

This is also proportional to the global change in the electronic energy, so that the

Hamiltonian maybe expressed as,

He−−LA = αnk (q.δR) . (2.8)

In terms of Phonon creation and destruction operators,

He−−LA = αnkq.
∑

q

(
~

2NV%ω

) 1
2

eq

[
d†qexp[i(q.rj −ωt)] + dqexp[−i(q.rj −ωt)]

]
.

(2.9)

N is the number of unit cells in the crystal, % the material density, V the crys-

tal volume, dq and d†q represent phonon destruction and creation operators, eq

corresponds to phonon polarization unit vector, and αnk represents the deforma-

tion potential. From the Hamiltonian, it is clear that at high enough tempera-

tures (kBT >> ~ω)††, the matrix element of He−−LA squared is independent of q

implying a short range interaction. Also, He−−LA depends on the mode frequency

as
√
ω−1, and as we shall see, this can have a profound impact on the observed

carrier dynamics of PbTe. One important feature of LA phonons is that, they pre-

serve the symmetry of the crystal which accounts for their influence on the entire

energy structure within the Brillouin zone. It should be noted that the above

expressions have been derived considering non-degenerate bands. The case of

degenerate bands is complicated and maybe found in [19].

• e−-TA interaction TA phonons represent shearing rather than dilation in mate-

rials. Thus these modes, unlike LA phonons, do not preserve the symmetry of

the lattice and lift the degeneracy of the otherwise non-degenerate bands. The

interaction with electrons is still through deformation potentials, only that here,

these correspond to proportionality constants for the energy gaps created at the

band gap degeneracies.

• e−-TO and LO interactions The optic branch of the phonons correspond to mi-

croscopic, longitudnal compression/transverse oscillations of the basis atoms across

brillouin zones. The relevant Hamiltonian HOptic is,

HOptic =Dnk(uLO/TO/a0) , (2.10)

††based on Bose-Einstein distribution of phonon occupation as dictated by the operators d†q and dq
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uLO/TO corresponds to lattice displacement due to LO/TO mode of the basis atom

relative to one another,Dnk the associated deformation potential, and a0 the equi-

librium separation of the basis atoms. As is the case with all of the deformation

potential based interactions discussed above, the absence of phonon q-vector de-

pendency signifies the absence of long range interactions in dual space. As is

the characteristic of deformation potential interactions, HOptic is proportional to
√
ω−1. This characteristic dependence of the interaction Hamiltonian has signifi-

cant role to play in case of materials which demonstrate the phenomena of mode

softening. Mode softening is discussed in PbTe in section 2.3 and the related ef-

fects on PbTe carrier dynamics in section 3.2.

Zone center Phonon induced E-field-e− interactions: Piezoelectric and Frölich

• Piezoelectric Field interaction In case of noncentrosymmetric materials such as

PbTe ‡‡ , applied strain can induce E fields-the Piezoelectric effect. This can be

generalized to the situation of periodic fluctuations in strain-Acoustic phonons.

The induced field is given by,

EP z = em.

Sij︷︸︸︷
qδR
ε0ε∞

(2.11)

where em is the electromechanical tensor of rank 3. Associating a scalar poten-

tial ΦP z with this field and using this, one can construct a Hamiltonian for the

Piezoelectric field induced e−-Acoustic phonon interactions:

HP z = −|e|ΦP z =
|e|

ε0ε∞q2 q.em.(qδR) , (2.12)

ε0 and ε∞ are static and high frequency dielectric constants respectively. HP z has

a q−1 dependence meaning that, this is a long range interaction in the real space.

• Frölich interaction This is an important kind of interaction in polar semiconduc-

tors. This involves LO phonon modes resulting in macroscopic fluctuations in the

longitudnal electric field. The electrons then couple to these fields and exchange

energy. The induced field corresponds to [34],

ELO =

√
Nµω2

LO(ε−1
∞ − ε−1

0 )
ε0

uLO , (2.13)

‡‡Ferroelectrics are known to generally exhibit Piezoelectric effect.
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where µ is the reduced mass of the basis atoms within the primitive cell, N is

the unit cell density, and ωLO is the LO phonon frequency. Notice that the ELO
fluctuations are along the LO mode q vector. Upon associating a scalar potential

to ELO, one can deduce HFr , the interaction Hamiltonian to be [34]

HFr = −|e|ΦFr = (ieF/q)uLO . (2.14)

Notice the q−1 dependence of the Hamiltonian (all the other q dependencies

arising from F and uLO cancel each other out, this can be seen from the explicit

functional form of the Hamiltonian which is not shown here) which implies a

long range interaction in the real space.

A simplified picture to understand ELO is to consider LO mode oscillations as

those between infinite planes, charged oppositely(which is the case with polar

semiconductors). ELO then corresponds to the electric field between these infinite

planes which fluctuate with changing plane separation. This is identical to the

case of an infinite plane capacitor with the plate separation changing and looking

at what happens to the field between the capacitor plates.

The specific form of the Hamiltonian allows us to compute selection rules for e−-

phonon interactions. This can be calculated based on the symmetries of the interacting

e− initial and final state wavefunctions and that of He−−ion that couple the transitions.

Zone edge and near-Zone edge Phonon (short wavelength)-e− interactions:

• These interaction are mostly limited to just deformation potential interactions.

This is true because of the q−1 dependency of the E-fields(as seen from the previ-

ous discussions). Since scattering across valleys within bands involve large mo-

mentum changes, owing to the fact that zone edge phonons have large q-vector,

they are capable of bringing about large k changes to e−s and are thus responsible

for the phenomena known as intervalley scattering. The Hamiltonian character-

izing zone-edge interaction is,

Hiv = ebq.
∂He−

∂R
u , (2.15)

where ebq represents the phonon polarization vector with b the branch number,

u representing the oscillation amplitude and thereby relating to the interaction

strength. The matrix element for the states coupled by the Hamiltonian is related

to the deformation potential as,

Dij =
〈nk|Hiv |n

′
k
′〉

u
, (2.16)
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where n’s and k’s represent band index and the brillouin zone vector of the cou-

pled states.

Essentially intervalley scattering is through deformation potential interactions.

2.1.4 Modeling Charge Carrier Dynamics

Up till now we have seen how an electromagnetic perturbation can drive interband

transitions and the subsequent material equilibration, and the relevant time scales for

these relaxation processes (2.1). In this section, we model a general pump probe signal

to see how this reflects the material dynamics and how one can extract the relevant

parameters of interest: relaxation times.

The pump probe signal in most cases is a reflectivity(R) or a transmitivity(T) based

measurement. These optical constants are directly connected to the material band

structure. To better understand this link, we start with the fact that for an electro-

magnetic radiation traversing through a medium (say along the z-direction) of refrac-

tive index n(ω) and an absorption coefficient κ (ω), the plane wave maybe described

as§§ [17],

ψ(z, t) = E0.e
i(i κωc )︸    ︷︷    ︸

Absorption

.ei(
nω
c .z−ωt) = E0.e

i( ñωc .z−ωt) . (2.18)

ñ = n(ω) + iκ(ω) is the complex index of refraction and this is related to the dielectric

constant ε̃r as ñ =
√
ε̃r . From classical electromagnetic theory, one can deduce a rela-

tionship between ñ, R, and T as (only the results are shown here) citeMark,

R(ω) =
∣∣∣∣∣ ñ(ω)− 1
ñ(ω) + 1

∣∣∣∣∣ (2.19)

and

T (ω) =
2

1 + ñ(ω)
. (2.20)

Now, εr depends on the inner products of Bloch envelope wave functions between the

states available for electronic transition (between valence and conduction bands) and

corresponding occupation numbers¶¶ [18],

§§Absorption happens in accordance with the Beer Lambert’s law

I(z)|z=L = I0.e
−κL (2.17)

L the length of the medium through which the radiation traverses and I0 the intensity at the surface of
incidence(z = 0).

¶¶These are semiconductor specific relations, a contextual illustration. Also see [16] [21]
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ε(q) = 1− 4πe2

q2

∑
k′

∑
k

∣∣∣〈k ∣∣∣e−iq.r∣∣∣k′〉∣∣∣2 (Nk′ −Nk)
(Ek′ −Ek)

. (2.21)

Nk is the occupation number of the state |k〉, q is the electron wave vector, Ek is the

energy of the kth state. A pump-probe signal measures the differential reflectivity or

differential transmitivity (∆RR or ∆T
T ) which is essentially a measure of change in the per-

mitivity. Since this measurement is done as a function of various time delay, a pump-

probe signal represents the change in ε̃r as a function of time. This is evident from

the fact that occupation numbers change when one optically drives interband transi-

tions. So, in essence, a pump-probe signal reflects a dynamic change in the electronic

structure of the material.

Having considered equation (2.21), it can be seen that εr(q) is also dependent on the en-

ergy levels being populated and hence imposes on the reflectivity signal, a wavelength

dependency. Thus, non-degenerate (for white light) pump-probe would reveal a great

deal about the relevant carrier dynamics happening over the spectrum of the probe.

Now that we have an understanding of the underlying physics of pump-probe spec-

troscopy, we turn our attention to how one can extract relaxation time constants for the

relevant scattering mechanisms based on mathematical modeling. It is evident from

Figure 1.2 (b) that a typical pump-probe signal (in the reflection geometry ***) shows

temporal decay. Thus, it is natural to model (adapted from [2]) the actual system re-

sponse (Sres), in most cases, as a sum of decaying exponentials,

Sres = θ(t).

 ∑
i=c−c,c−ph,...

Ai .e
−t/τi

 , (2.22)

where θ(t) is a unit step function. The step function prompts an instantaneous re-

sponse from the system to the induced perturbation. The Measured signal(Smes) how-

ever is a convolution of Sres with the pump-probe auto-correlation function,

Smes =
∑

i=c−c,c−ph,...

Ai .e
(−4τi .t+2.σ2)

4.τ2
i .
√
π.Erf c

[√
1

2σ2
(−2τit+2σ2)

2τi

]
2
√

1
2σ2

. (2.23)

In the summations above c-ph represents a carrier-phonon interaction channel. Fig-

ure 2.5 shows the effect of pulse width (σ ) on the observed signal (Smes). For the pur-

pose of illustration, we’ve considered the summation equation (2.22) to consist of two

***Also applicable to the kinematics of the system studied with transmission geometry.
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components, 1 ps (τ1) and 10 ps (τ2). It is seen that, whenever τ/σ >> 1, the component

is well resolved. This tells us that, in order to resolve the system response, the pulse

width should be much smaller than the corresponding response.

In principle, one could also include ph-ph terms and slow heating terms in Sres. More-

over, in most applications of interests, the c-c channel is difficult to resolve because of

the timescales of the process (< 100 f s typically). So, most cases, one would be mea-

suring the e-ph and the ph-ph decay. To complete the picture, a third long lived com-

ponent (≈ 1 ns or greater) is introduced to account for the slow equilibration through

processes such as Auger recombination or carrier diffusion.
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Figure 2.5: The system response Smes for different pulse widths. Top: the 1 ps (τ1)
component is well resolved for σ

τ1
= 10. Bottom: for σ

τ1
= 1, τ1 is unresolved while τ2

is still well resolved.

For ultrashort pulses on the order of 10s of femtoseconds in duration, the pulse maybe

approximated as a delta function and relaxation times maybe obtained by fitting just

the decaying of the differential signal to equation (2.23), and extract appropriate time

constants.

Finally, we briefly mention the two temperature model (TTM). The TTM is applicable

when the electronic system has reached a quasi-equilibrium(section 2.1.2), to model

the e−-phonon interaction. This model considers two systems, lattice and the electronic

subsystem at different temperatures and describes the energy exchange between the

two. TTM is mathematically described by a set of coupled differential equations for Te
and Tl [24],
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γeTe
dTe
dt

=
(1−R)Fp(t)e−

z
d

d
−

e−−phonon coupling︷         ︸︸         ︷
Ue−ph(Te,Tl) (2.24)

Cl
dTl
dt

= −ClD
d2Tl
dz2︸      ︷︷      ︸

dif f usion

+Ue−ph . (2.25)

In equations (2.25) and (2.26), D, F, γe, Cl and, p(t) represent the thermal diffusion co-

efficient of the material, pump fluence, electronic specific heat, lattice specific heat, and

pump pulse-profile, respectively. R and d are the reflection co-efficient and the pene-

tration depth at the central pump wavelength. Ue,ph is the energy coupling between the

subsystems. Ue,ph is proportional to the e-phonon coupling coefficient, g∞, and corre-

sponds to a fit parameter that has to be determined from fitting a pump-probe dataset.

Note that this model assumes electronic interaction with a single phonon subsystem. It

should be noted that this model ignores the fact that there could be phonon-phonon in-

teractions, electron-acoustic phonon interactions in addition to relatively fast electron-

optical phonon interactions.

2.2 Optically induced Coherent Phonons

Lattice vibrations in a crystal can be modeled as a quantum harmonic oscillator. Let

us consider a particular phonon mode at a frequency ω. In the absence of external

perturbations, the expectation values of the conjugate variables P and Q (〈P 〉 and 〈Q〉)
are zero. However, in the presence of a perturbation, mainly an impulsive driving

force, the lattice can exhibit coherent oscillations. In general we’ll be concerned with

two types of oscillations namely coherent phonons and squeezed phonons. Before we

understand these oscillations quantum mechanically, it would be beneficial to discuss

it qualitatively.

To begin, consider a classical harmonic oscillator. In the absence of any perturbation,

this oscillator can be represented in phase space as a point at the origin as shown in

figure 2.6 (a). An impulsive perturbation to the oscillator corresponds to a non-zero

momentum state and this is represented in phase-space as a point displaced from ori-

gin along the P axis by an amount P0. The oscillatory motion due to the initial impulse

can be represented as a point orbiting the origin at a radius P0 with an angular fre-

quency ω. This corresponds to the oscillations between state of zero position and zero

momentum, the latter corresponding to the classical turning points.
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A thermal distribution of phonons prior to an impulsive perturbation can be repre-

sented in phase-space as a shaded circle as shown in figure 2.6(a). Here, the diameter

is related to the uncertainty in P and Q. The excitation of a coherent phonon through

an impulsive excitation corresponds to the shaded circle being displaced along the mo-

mentum axis by some value P0. The subsequent time evolution is represented by the

circle orbiting the origin at a frequency ω (figure 2.6 (b)). As such, the expectation

value of the position oscillates sinusoidally, that is the macroscopic oscillation of the

lattice. A coherent phonon still represents a minimum uncertainity state, and though

the 〈Q〉 oscillates, 〈Q2〉 remains unchanged [? ].

The case of a squeezed state is markedly different. The impulsive excitation in this case

does not involve a momentum displacement, but rather a ”squeezing” of the phase

space circle into an ellipse (figure 2.7). This ellipse then rotates about the origin at

ω. Here, the major axis of the ellipse aligns with the Q axis twice per rotation, and so

too does the minor axis (the same is true for the P axis as well). As such, though the

〈Q〉 = 0 (the center of the ellipse is not displaced), 〈Q2〉 varies at 2ω (as does 〈P 2〉).
Thus, a sqeezed state does not correspond to a macroscopic oscillation of the lattice,

but an oscillations of the variance of the lattice atom positions [? ].

Mathematically, the origins of coherent oscillations can be understood by considering

the susceptibility of the medium. The susceptibility (χ) of a medium depends on the

phonon coordinate q. As such, we can Taylor expand it as [? ],

χ(t) ≈ χ0 +
[
∂χ
∂q

]
0
q(t) +

[
∂2χ

∂q2

]
0
q2(t) + ... . (2.26)

The second term is associated with coherent phonons and the third with squeezing. We

can model both systems as a driven harmonic oscillator (ignoring damping for simplic-

ity) [? ],

Q̈+ω2Q = F(t) , (2.27)

where F(t) represents the impulsive driving force. In case of coherent phonons, the

driving force corresponds to,

F(t) =
[
∂χ
∂q

]
0
|E(t)|2, (2.28)

where E(t) corresponds to the electric field of the pump pulse which impulsively drives

the coherent oscillations. In the case of squeezed phonons,

F(t) =
[
∂2χ

∂q2

]
0
q(t)|E(t)2| (2.29)
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Figure 2.6: (a) In the absence of any perturbations, the phase space coordinate for
a classical oscillator is represented by the red dot at the origin. Quantum mechani-
cally, an unperturbed oscillator is represented by the shaded circle about the origin
representing the uncertainty in P and Q (b) An impulsive perturbation results in new
displased P coordinate for the oscillator, represented by P0. For the quantum oscilla-

tor, this would mean 〈Q〉 is a non-zero quantity.

Figure 2.7: An impulsive excitation resulting in the squeezing of the uncertainties in
the Q and P coordinates. Notice the average values of the phase space variable are still
zero in this case (〈P 〉 = 〈Q〉). Thus, what we observe essentially is a non zero variance

in coordinates P and Q.

A squeezed phonon generally involves a coupling between two phonons from the same

branch or between different branches [greg]. The latter corresponds to interbranch

squeezing. It can be shown that the expectation value of the variance for such a squeezed

state is [? ],
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〈Q1Q2〉(t) =A+sin[(ω1 +ω2) t +φ+] +A−sin[(ω1 −ω2) t +φ−] , (2.30)

where ω1, ω2 are the two phonon frequencies, φ+, φ− represent the phase terms, A+,

A− are the amplitudes corresponding to ω1 + ω2 mode and ω1 − ω2 mode, respec-

tively. These amplitudes are related to the Bose-Einstein distribution of the individual

phonon modes [? ],

A+ ∝ 2 +n(ω1,T ) +n(ω2,T ) (2.31)

A− ∝ n(ω1,T )−n(ω2,T ) , (2.32)

where,

n(ω,T ) =
1

1 + exp( ~ω
kBT

)
, (2.33)

is the Bose-Einstien distribution function for phonons at frequency ω, temperature

T. It is clear that as the temperature becomes smaller, n becomes small. This means

that the A+→ 2 while A−→ 0. The difference mode becomes less prominent at lower

temperatures while the sum frequency mode has an appreciable amplitude at low tem-

peratures.
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2.3 Lead telluride

Figure 2.8: Crystal structure in direct and reciprocal spaces for PbTe. Left: PbTe has
a FCC(Halite/Rock salt) structure, green represents P b2+ and grey the T e2−ions, each
of these ions are surrounded by 6 of the other type in an octahedral fashion [33] .

Right: The material first Brillouin zone [32] .

PbTe is a notable thermoelectric with a cubic(halite) lattice structure. The thermoelec-

tric peculiarities and the corresponding enhancement schemes are already discussed

in the introductory section of this thesis. To summarize, PbTe happens to possess an

exceptionally low thermal conductivity, despite it’s simple lattice structure, in the ab-

sence of alloying or any appreciable impurity based phonon scattering mechanisms.

The lattice structure and the first brillouin zone is shown in figure 2.8 and the reflec-

tivity data in figure 2.9. The observed peaks in reflectivity correspond to the transition

noted in the caption. These transitions are between p-like states for E1 −E3 and p-like

Valence band and s-like Conduction band states for E4−E6 transitions. A more detailed

discussion on this maybe found in [7] [23].

PbTe has a direct band gap (Eg ) of 0.3 eV at the L-point making it a narrow gap ma-

terial. Figure 2.10 shows the band structure in the relevant subsection of the first

brillouin zone. In the context of our experiments, it is important to consider change in

the band gap due to temperature. In general, the gap of most semiconductors increases

with decrease in temperature. This maybe noted from Figure 2.11 for prototypical

semiconductors Si and GaAs.

Band gap changes with temperature can be associated with e−-phonon interaction and

volume changes in the lattice [30],

(
∂Eg
∂T

)
p

=
(
∂Eg
∂T

)
EP

+
(
∂Eg
∂T

)
T E

(2.34)
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Figure 2.9: PbTe Reflectivity at 297K. E1−6 represents specific transitions in PbTe;
Σ1 −Σ4 along band minimum in the Γ −K zone, ∆1 −∆1 between saddle points in the
Γ −X zone and zone edge X5′ −X2 transition corresponds to E1−3 peaks in reflectivity.
E4 and E5 peaks are representative of transitions at Γ and E6 corresponds to L3−L2′ [7] .

Figure 2.10: PbTe Band structure [12]. The material has at the L-point, a direct band
gap(≈ 0.32eV ), the L6

1→ L6′
1 direct transition(circle denotes the band gap) is thus pos-
sible for appropriate wavelengths.

subscripts p, EP, TE are constant pressure, electron-phonon-component, and thermal

expansion component. It is found that, for PbTe, both TE and EP terms are positive.
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Figure 2.11: Temperature dependence of band gap for some common semiconductors.
Left: GaAs. Right: Si. Both of them show a decrease in band gap with increase in

Temperature [29] .

The band structure picture presented in Figure 2.10 doesn’t take into account the spin-

orbit interactions(SO) in PbTe. A more rigorous calculation of band structure taking

into account spin-orbit interactions can be found in Figure 2.12 wherein, it can be seen

the bandgap transition involves L+
6 → (L−4 ,L

−
5) states. Thus, the valence band involved

in the transition at the band gap (L+
6 ) is not an absolute valence band extremum. It

is hypothesized that the L−6 state that can perturb the L+
6 state to cause the observed

temperature trend associated with the EP interaction [7] . The forbidden L−6 → (L−4 ,L
−
5)

transition is due to the parity of the bands involved and the associated selection rule.
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Figure 2.12: Left: Variation in PbTe Band structure with Temperature. This is based on
a theoretical calculation, supplemented by X-ray diffraction studies [20]. Right: PbTe
band structure(Γ -L zone) calculation with spin-orbit coupling taken into account. The
band gap transition is between L+

6 and (L−4 ,L−6 ) bands. Notice the valence band state L−6
in between the bands involved in Eg transition [7] .
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Figure 2.13: Experimental phonon dispersion relation of PbTe [10]. Notice the un-
usually low TO mode frequency at the Γ and the TO-LA crossing in Γ -X region of the

brillouin zone (at approximately 60 cm−1).

Figure 2.13 shows early experimental phonon dispersion relation for PbTe. The TO

mode frequency at the Γ is smaller than in most semiconductors (GaAs for exam-

ple [45]). However, as we shall see later, more recent experiments [13] reveal that

there is great deal of ambiguity in phonon dispersion relation at the Γ point. This is

partly due to the fact that PbTe also exibhits TO mode softening [1], meaning that the

frequency of the TO mode close to the Γ point lowers with lowering temperature. How-

ever, the mode does not soften completely making PbTe a paraelectric [5]. In figure 2.14

one can find inelastic neutron scattering data showing mode softening in PbTe. The

INS data also shows that the ω2
TO close to Γ has a linear dependence on temperature.

This is referred to as the Curie law temperature dependence [9],

ω2
TO(q ≈ 0) = γ(T − Tc) , (2.35)

where Tc denotes the Curie temperature which is the temperature at which the mode

completely softens(ω2
TO → 0)for ferroelectrics. The fact that TO mode follows Curie

law(although not soften entirely at the Γ ) makes PbTe a potential ferroelectric upon in-

troducing some impurities/dopants, typically, Sn. As such PbTe is commonly referred

to as an incipient ferroelectric.

Owing to the anomalous nature of the phonons at the Γ point, recent inelastic neutron

scattering experiments on PbTe have revealed great deal of ambiguity in phonon dis-

persion. This may point to the origins of low κl in the material [13]. The argument
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Figure 2.14: Inelastic neutron scattering data representing mode softening in PbTe.
The mode softening exhibits a linear trend with temperature, the so called Curie law

temperature dependence [1].

Figure 2.15: The waterfalleffect in PbTe. Left: The white lines are the DFT(Density
Functional Theory) calculations of phonon dispersion relation for PbTe(in the Γ (G)-
X zone). The dashed white line is the LA mode. Notice that the color coded data
deviates from the DFT calculations; the LA mode happens to have a crossing with the
TA mode close to the X point(≈ 4 meV , 0.2(rlu)) and the mode intensity seems to be
extinguished in the Γ -close to X point regions(between 0.4(rlu) and 1.0(rlu)). Right: TA
mode shifts in energy along the blue solid rectangle shows the TO mode to be at a low

energy close to Γ [13]
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Figure 2.16: The experimental dispersion relation for LA mode. Notice the kink at
0.2×2π

a , a is the lattice constant [13].

is that the TO mode has a strong anharmonic coupling with the LA mode and the TO

mode frequency may lie much lower at the Γ point than previously reported in fig-

ure 2.13 [10]. It is suggested that this strong anharmonic interaction softens the LA

mode close to the zone center manifesting as a kink in the dispersion at 0.2× 2π
a where

a is the lattice constant, as shown in figure 2.16. This effect of TO-LA mode coupling

through an anharmonic interaction and the resultant softening of the LA phonon fre-

quency is analogous to the waterfall effect seen in ferroelectrics. This ultimately results

in lower group velocity for the LA mode close to the Γ point and maybe the source of

the unusually low thermal conductivity in PbTe. Additionally, due to the repulsion

between the LA and the TO modes, it is reasonable to expect that LA mode softens as

well. As we shall see later, the phonon frequency plays a major role in determining the

strength of e− phonon interactions. As such, these unique properties manifest in the

ultrafast relaxation dynamics.
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Experimental

3.1 The Experimental Setup

Figure 3.1: The HARPIA spectral pump-probe transient spectrometer. The red
marker represents the pump beam path. The probe beam is a white light supercon-
tinuum. To generate the continuum the 1445nm beam is focused onto the sapphire

crystal(SW) and, it has a spectral band width ranging from 480nm-780nm.

The experimental setup consists of an amplified laser system (PHAROS, Light Conver-

sion Ltd). The laser has two outputs: one at 800nm (10µJ) and the other at 1445nm (4µJ)

with 30 fs and 35 fs pulse durations, respectively. The pulse have a gaussian intensity

profile and an approximately TEM00 spatial mode. Both these beams are directed to

the transient spectrometer where we conduct our pump-probe measurements.

29
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A schematic representation of the transient spectrometer setup that was used is shown

in figure 3.1 . In the figure, S1 and S2 represent beam shutters, para1 and para2 repre-

sent parabolic mirrors, and BS is a 90:10 beam splitter. The 1445 nm beam is focused

onto the the Sapphire crystal to generate a white light super continuum which con-

stitutes the probe beam. We use the 800 nm beam as the pump to excite the sample.

The pump and probe beams are focused onto the sample on the same spot with the

aid of a Thorlabs CMOS camera to examine the pump-probe overlap (see appendix C).

The pump beam after reflection from the sample is blocked. The probe beam is colli-

mated and then, focused onto a narrow (≈ 20µm) slit at the spectrometer entrance. The

spectrometer consists of a grating and a pair of mirrors to direct the individual probe

wavelengths onto a 256 channel silicon array detector. The beam intensities were con-

trolled by use of neutral density filters. S1, S2, the chopper and the detector (next

to BS) are the main parts of the data acquisition procedure which is presented in the

section 3.1.1.

3.1.1 Data acquisition

The signal acquired by the transient spectrometer is already processed,

S(ω,t) = Log
[
Iunpumped(ω)− Idark,unpumped(ω)

Ipumped(ω,t)− Idark,pumped(ω,t)

]
. (3.1)

Iunpumped denotes the detector recorded probe intensity when the pump beam is blocked

by the chopper and Ipumped when the pump beam passes through the chopper. This

classification of the recorded probe intensity is obtained using the detector next to the

beam splitter. The subscript dark represents the background measurement which is ob-

tained using mechanical shutters S1 and S2. The probe beam is blocked by S1 and the

spectrometer measures data in the presence of pump (scatter) when S2 is open and also

when S2 is closed (electronic noise). The latter corresponds to Idark,pumped and former

to Idark,unpumped . It should be noted that, even while the background measurement hap-

pens, the pump beam continues to be modulated by the chopper. This ensures that the

subtracted background takes into account the experimental conditions. There are two

measurement settings that decide the number of averages per data point. Number of

shots per buffer decide the number of shots that are averaged to give a single data point.

A shot is an integration time average of the pumped and unpumped signal. The other

setting is number of buffers per point. This considers the number of shots per buffer to

average over, to obtain a single data point. Modulation of the pump beam during the

course of experiment would then be (taking into account that our measurements are
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reflectivity based, all the measured signal intensity corresponds to reflectivity R),

Rpumped(ω,t) = Runpumped(ω) +∆R(ω,t) . (3.2)

∆R(ω,t) represents the change in the material reflectivity as a function of probe fre-

quency (ω) and delay time (t). Thus, by suitable changes to equation (3.1), taking into

account equation (3.2), we can get the quantity of interest, the differential reflectivity,

∆R(ω,t)
R(ω,t)

= 1− 10−[S(ω,t)×103] . (3.3)

A factor of 1000 is associated with S as the spectrometer records the data in units

of 10−3. R represents the unpumped intensity reflected by the sample. Differential

reflectivity quantifies the relative change in reflectivity of the material due to pump

perturbation.

3.1.2 Measurement scheme

Our measurements on PbTe were done with a pump average powers of 10 mW (mea-

sured before the chopper). The pump beam was at 800 nm and the probe beam was

a broad band continuum with a 480 nm-780 nm spectral bandwidth. The focused

pump beam on the sample had an angle of incidence of about 5◦ and the focused probe

beam an angle of ≤ 1◦. The measured spot diameters of pump was dpump,a ≈ 73.96µm,

dpump,b ≈ 62.32µm and, that of probe was dprobe,a ≈ 29.64µm, dprobe,b ≈ 29.05µmwherein,

the subscripts a and b corresponds to the ellipse major and minor axis respectively. The

elliptical nature of the laser spot maybe attributed to the incoming angle of the beams,

which otherwise have a Gaussian intensity profile. Details on the spot size measure-

ment procedure and the acquired data is presented in Appendix A.3. The measure-

ments were carried out at 25 K, 50 K, 75 K, 100 K, 150 K and 297 K. All of these

measurements were made within a cryostat (Oxford) at 2.4 × 10−6mbar vacuum envi-

ronment. The detector integration time was set to 0.85 ms, the number of shots per

buffer to 300, and number of buffers per point was set to 1. This setting corresponds

to a single data point measured over 0.25 s (= 300 × 0.85 ms). The measurement was

broken into three parts, 0-10 ps timescale with a delay stage step size of 0.02 ps per

step, 5-50 ps with a step size of 0.5 ps and 5-1000ps with 4 ps.
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Figure 3.2: The ∆R
R data presented across 620 nm-720 nm at a temperature of 25 K.

The data presented here has been broken into 0-5 ps regime (a, b), 0-20 ps (c, d) and
0-1 ns (d, e) regimes to highlight, coherent oscillations, 0-20 ps carrier dynamics and

the slow recovery of the system to equillibrium respectively.

3.2 Ultrafast Carrier Dynamics in PbTe

In figure 3.2, we present the raw data between 620 nm-720 nm at 25 K (color plot) and

a sample wavelength (670 nm) on three different timescales: 0-5 ps (3.2 (a) and (b)), 0-

20 ps (3.2 (c) and (d)), and 0-1 ns (3.2 (e) and (f)). A notable feature of the pump-probe

signal is the presence of coherent oscillations (seen as ripples on the color plot) lasting

for 4 ps-5 ps (see figures 3.2 (a) and (b)). This is apparent in the 0-10 ps regime and

also in the 0-20 ps timescale. Apart from the oscillations, the 0-20 ps data reveal some

interesting carrier dynamics. One can notice here a fast response in about a picosecond

duration followed by a slow decay on the order of 10’s of ps (refer to figures 3.2 (c) and

(d)). On considering the full data, up to 1 ns, it can be seen that the system recovers to

the initial optical state on an approximately nanosecond timescale (figures 3.2 (e) and

(f)) and this is due to carrier diffusion and slow lattice cooling.
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Figure 3.3: Coherent oscillations at various measured temperatures and the corre-
sponding component oscillators (obtained from the fast fourier transform of the os-
cillations). Notice that there are three component oscillators: 113.41 cm−1 (3.4 THz),
46.69 cm−1 (1.4 THz) and 30.02 cm−1 (0.9 THz). Also notice that the magnitude of the

individual components are varying across various temperatures.

The coherent oscillations (presented in figure 3.2 (b) and (d)) at first glance may seem

to be composed of a single high frequency mode, however, our temperature dependent

measurements reveal more detail. In figure 3.3, we can see that the fourier transform

of the oscillations in ∆R/R show peaks at 3.4 THz, 1.4 THz and 0.9 THz. We see that at

25 K and 50 K, the 3.5 THz and the 0.9 THz oscillations have dominant contributions.

As we go higher up in temperature, these two modes get damped while the 1.4 THz

mode (see 50 K-150 K fourier transform plots, figure 3.3) becomes prominent.

Now we look at the temperature dependence of the carrier dynamics. For the pur-

pose of clarity, we consider the 670 nm data (probe wavelength) on the 0-40 ps time

scale. The choice of time scale includes only the relevant carrier dynamics. e−-phonon

and phonon-phonon interactions typically happen within the 40 ps duration (see sec-

tion 2.1.2). Figure 3.4 illustrates the carrier dynamics at different temperatures. Clearly,
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Figure 3.4: Pump-probe signal at 670 nm across all the measured temperatures pre-
sented on a regular scale and a Log scale. Clearly, the carrier dynamics is differing at
different temperatures. The plot presented here has been normalized to 100 K data

and the baseline corrected to zero. The Log scale plot is for visualization purposes.

we notice a variation in the carrier lifetimes across various temperatures, particularly

between 50 K-75 K. However, it is difficult to deduce the trend in the dynamics on a

visual basis.

The detail on the origins of such carrier dynamics and the previously discussed coher-

ent oscillations will be explained in sections that follow. But first, we briefly discuss the

data fitting procedure in obtaining the relevant fit parameters, namely, the relaxation

time constants and the oscillator decay time constants.

3.2.1 Oscillator data fitting

The raw data in figure 3.2, as discussed earlier, has two major components to it: the

coherent oscillations and the carrier dynamics. The fitting problem was addressed in

parts; first we fit the oscillators and, then we subtracted this oscillatory background to

address the carrier dynamics. To extract the oscillations from the raw data, we con-

sidered the 0-10 ps data set. To this data we fit an 8th order polynomial to subtract the
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carrier background. The resultant data then consists of pure oscillations which can be

seen in figure 3.5 for the 50 K dataset at 670 nm.
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Figure 3.5: Pure oscillations extracted from the 50K data at 670nm probe wavelength.

In order to fit these oscillations, we considered the fourier transform of this data to

determine the component oscillators. Figure 3.6 shows one such example with the

50 K data set at 670 nm.

In order to fit the oscillations, we used a decaying oscillator model with the frequencies

already determined by the peaks in the fourier transform,

O(t;γ,β) =
1,2,3∑
i

Ai .exp[−t/γi].sin[ωi(t − β)] . (3.4)

In the above fit, ωi ’s correspond to previously determined component frequencies mul-

tiplied by 2π. γi and β represent the fit parameters corresponding to oscillator decay

constant and a phase shift term respectively.

The above model was fit to the oscillatory data set using global least squares curve

fitting method. This was implemented using a Levenberg-Marquardt algorithm. The

least squares method constitutes a minimization problem [15],

∂S(Γk)
∂Γk

=
∂
∂Γk

∑
i

(yi − f (xi ,Γ ))2 = 0 . (3.5)
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Figure 3.6: Fourier space of the time domain data (figure 3.5). The component oscil-
lator peaks have been identified to be 3.5 THz, 1.5 THz and 0.9 THz respectively.

Γk are a set of parameters that has to be determined for the data (xi ,yi) with the model

fit function f so that S (residual) is minimized. The Levenberg-Marquardt algorithm

approaches this problem by introducing a non-negative damping factor (λ) to the least

squares problem. The basic idea is to reset λ depending on the rate at which the resid-

ual approaches smaller values, at each subsequent iteration. So, smaller rates corre-

sponds to bigger lambda and vice versa. Thus, λ damps the deviations from the solu-

tion (to solve for Γk) and thereby ensures faster convergence [15].

In order to understand the global fit procedure, we need to look at our data set. The

pump-probe data was obtained across various probe wavelengths and across 5 differ-

ent temperatures. Thus, our data sets are parametrized by these two variables. The

oscillation dynamics however, are not affected by probing wavelength. Thus, the os-

cillatory part of the data set can be considered to be parametrized by temperature (T)

alone. This then means that, it is sufficient to fit a model function of the form in equa-

tion (3.4) to obtain global parameters across wavelengths, at each temperature (so that

γi = γi (T ) and βi = βi (T )). The details of the global fit implementation can be found

in appendix B
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3.2.2 Coherent oscillations in PbTe

In section 3.2 we identified the component oscillators to be (figure 3.3) at 3.5 THz,

1.4 THz, and 0.9 THz. In what follows, we first explain the origin of the modes:

1. The 3.5 THz mode can be associated with either of the three possibilities:

(a) It has been reported that tellurium ions segregate at the surface due to laser

induced decomposition of the material in the region being probed [27]. The

tellurium surface formed this way has a Raman active phonon mode at ap-

proximately 3.5 THz(relevant Raman spectra can be found in [35]). Fig-

ure 3.7 shows this observation in Sb2Te3. Similar tellurium aggregation are

thought to occur in tellurium based compounds.

Figure 3.7: The appearence of the A1g mode (3.5 THz) due to laser induced decom-
position of Sb2Te3 [35]. Notice the appearence of the A1g mode after laser irradi-

ance (shown in the inset as a fourier transform of the data).

(b) An interbranch squeezing of the TO and the LA phonon at the X point (TO (X)+LA (X)).

(c) PbTe has a Raman inactive LO phonon mode at 3.5 THz at the Γ -point which

has been observed experimentally by electric field-induced Raman scatter-

ing [6].

2. The 1.5 THz mode could be due to interbranch squeezing of the difference mode (TO (X)-

LA (X)), which is the counterpart to the mode described in 1.(b).
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3. The 0.9 THz mode could be due to the bare TO mode, however, this is not very

clear as PbTe is first order Raman inactive. This means, it is not possible to ob-

serve coherent phonons at this frequency.

Figure 3.8: The ratio of amplitudes of interbranch difference frequency
mode (1.5 THz, amplitude A1.5) to sum frequency mode (3.5 THz, amplitude A3.5).
The dashed line and the solid lines are the model fits. The former considers TO mode

softening while the latter does not.

As discussed before, PbTe is Raman inactive and it should not be possible to have a

LO mode. Moreover, no band bending at the surface occurs in our experiments as

no metal-semiconductor junction exists. Thus, this mode is most likely not the LO

phonon.

The possibility that the 3.5 THz and the 1.5 THz indeed correspond to interbranch

squeezing counterparts can be further investigated by by examining their amplitude

versus temperature tendencies. In figure 3.8 we show the ratio of difference mode am-

plitude (A1.5) to the sum mode amplitude (A3.5). We can calculate this based on the

amplitude behavior of interbranch squeezed modes with temperature, as discussed in

section 2.2. From figure 3.8, the solid line represents the calculated amplitude ratio

without taking into account TO mode softening. The dashed line considers a 50 per-

cent TO mode softening. The qualitative agreement between the dashed line and the

experimental data lends support to our assertion that the 3.5 THz and the 1.5 THz

mode are interbranch squeezed state counter parts particularly when we take into ac-

count TO mode softening.
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3.2.3 Fitting the carrier Dynamics

We now analyze the carrier dynamics by subtracting the oscillatory component using

the fit parameters determined in section 3.2.1. For this purpose we consider the data in

the 0-40 ps timescale because this choice of time scale includes only the relevant carrier

dynamics. As discussed in section 2.1.2, e−-phonon and phonon-phonon interactions

typically occur within the 40 ps duration. Figure 3.9 shows an example of the pure

carrier dynamics without the oscillatory background for the 670 nm data at 25 K.
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Figure 3.9: Pump-probe signal with the oscillatory component subtracted, at 670 nm
probe wavelength, 25 K.

In order to fit the carrier dynamics, we use a two decaying exponential model,

f (t;τ,A) = A0 +A1.exp[−t/τ1] +A2.exp[−t/τ2] . (3.6)

Ai and τi constitute the fit parameters and correspond to the relaxation time constant

and the amplitude of the associated decay channel, respectively. A0 accounts for the

population of long-lived valleys. The curve fitting procedure implemented here is sim-

ilar to the methods discussed in section 3.2.1. However, we don’t consider a global fit

here, as the carrier dynamics, in general, depends on the probe wavelength . The vari-

ation in the parameters across various wavelengths is small however and is illustrated

in figures 3.11-3.12. Figure 3.10 shows the model fit for 670 nm, at 25 K as an example.
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Figure 3.10: Model fit for the 670nm, 25K data. The fit function components have
decay constants of 0.53 ps and 9.53 ps.
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Figure 3.11: Left: The fast relaxation decay component as a function of temperature
and wavelength. The trend is an increasing one and the parameter ranges between
0.4 ps-1.2 ps. Right: The amplitude (A1) for the fast decay channel seems to be nega-

tive and increasing with temperature.

3.2.4 Carrier dynamics in PbTe

From figure 3.11 we notice that the relaxation time (τ1) increases with temperature.

The range of τ1 (0.4 ps-1.2 ps) is consistent with the time scale of e−-optical phonon

interaction (see section 2.1.2). These include e−-TO and e−-LO interactions. We can
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combine our discussions from sections 2.1.3 and 2.1.4 to qualitatively describe the ob-

served τ1:

1. The e−-TO interaction Hamiltonian (HTO) has an inverse proportionality to the

TO mode frequency (ωTO),

HTO ∝
√

1
ωTO

. (3.7)

2. The TO mode softens at the zone center,

ω2
TO (q ≈ 0) ∝ (T − Tc) . (3.8)

3. Combining 1. and 2., we have the following temperature dependency for HLO,

HTO ∝
√

1
T − Tc

(3.9)

This would mean that at low temperatures, the e−-TO interaction becomes strong.

4. Based on laser fluence calculation, we determined the laser induced carrier den-

sity to be on the order of 1020 (see appendix C), three orders of magnitude larger

than the intrinsic carrier density. It is known that, under sufficiently large carrier

densities, Fröhlich interactions can be partially screened resulting in a weaker

e−-LO interaction [26] [48]. Qualitatively, screening refers to the fact that, when

there are sufficient carrier densities, these excess carriers can screen the longi-

tudnal E-field of the LO mode. This partially reduces the intensity of the interac-

tion field. Thus, we assume a partial screening of the LO mode interaction. This

makes e−-TO scattering the dominant relaxation mechanism on this time scale.

From points (1.)-(5.) we can conclude qualitatively that these arguments can account

for the observed increase in τ1. It should be noted that the TO (LO) mode interac-

tion (through the deformation potential) in semiconductors (with zinc blende crystal

structure) with a direct band gap at the Γ such as GaAs is forbidden due to selection

rules [r]; the symmetries of the state at Γ (s-like) and that of the interaction Hamiltonian

do not permit intraband transitions between non-degenerate states in the conduction

band by the emission of TO phonons. However, this is not the case with PbTe as it

has a band gap at the L-point and the state symmetry (p-like [40]) permits intraband

transitions by interactions with TO modes through deformation potential interaction.
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Theoretical calculations to understand the behaviour of τ1 as a function of temperature

due to e−-optical phonon deformation potential interaction exist [14],

τ1 ∝ T
−3
2 Ξ−2 . (3.10)

Here Ξ corresponds to the deformation potential. This can be explained by the fact

that, the temperature dependence appearing in equation (3.10) comes from the evalu-

ation of,

|〈k
′
,n
′
q|He−−LA|k,nq〉|2 , (3.11)

where n
′
q and nq corresponds to the phonon initial and final occupation numbers, re-

spectively. k
′

and k corresponds to the final and initial momentum states of the elec-

tron. The temperature dependence is due to the evaluation of nq ≈ nq + 1 ≈ kBT
~ωq

. This

approximation however is only valid for ~ωq << kBT , which is not the case for low

temperatures, where we observe the peculiar behavior for the fast and slow relaxation

time. Additionally, it should be noted that these calculations do not take into account

TO mode softening or the temperature dependence of Ξ. Moreover, it has been found

that, Ξ shows an increase with increasing temperature [49]. However, deformation po-

tentials can be difficult to calculate, hard to determine experimentally, and there exists

large discrepancies in the calculated and experimental values [49].
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Figure 3.12: Left: The slow relaxation decay component as a function of temperature
and wavelength. The trend is an increasing one and the parameter ranges between
8 ps-18 ps. Right: The amplitude (α2) for the fast decay channel seems to be positive

and decreasing with temperature.
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In figure 3.12 the time range for the τ2 (8 ps-18 ps) is consistent with two possibil-

ities: e−-acoustic phonon interactions and optical phonon-acoustic phonon interac-

tions (2.1.2). Further, we see a dramatic dip in τ2 at ≈ 100 K, and we must see if

these two relaxation mechanisms can explain this. We will begin by considering the

e−-acoustic phonon interactions. Based on discussions in section 2.1.3 we have:

1. The deformation potential associated with TA mode is generally lower than that

associated with LA mode due to the nature of the modes. This fact can be qualita-

tively understood based on the fact that the LA mode constitute shear and volume

changes to the lattice. The TA mode however, constitutes only a shearing of the

lattice. This would mean that, in terms of lattice deformation, the LA mode has

larger deformation potential than the TA mode and contributes more to the re-

laxation on these timescales.

2. The interaction Hamiltonian (HLA) for e−-LA phonon interaction depends on the

mode frequency ωLA as,

HLA ∝
√

1
ωLA

. (3.12)

3. We have seen that the TO mode softens with temperature. From our discussions

in section 2.3 , we notice that TO mode softens the LA mode, additionally due to

strong anharmonic coupling between TO and LA mode.

4. From the above arguments, we can see that on a qualitative basis, the interaction

strength should increase with decreasing temperature, as we see in figure 3.12

for the 10-100 K range. The explicit functional form for LA mode softening is not

known, however.

Thus, the e−-LA interaction is the dominant e−-phonon interaction consistent with the

smaller τ2 with decreasing temperature.

Now we consider the case of optical phonon-acoustic phonon interactions:

1. TO-LA interactions are strong in PbTe due to the anharmonic coupling between

these modes (see the discussion in section 2.3). Since we have seen that the TO

mode softens with temperature, it is possible that the TO-LA interaction gets

stronger with decreasing temperature.

2. Stronger e−-TO interactions as opposed to e−-LO interactions (due to screening ef-

fects as discussed earlier) result in greater population for the TO mode phonons

in comparison to LO mode phonons. Consequently, the TO-acoustic mode inter-

action channel dominates the LO-acoustic mode interactions. As far as TO-TA
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interactions are concerned, they do exist but, these are not as prominent as TO-

LA. This is attributed to the particularly strong coupling between these modes.

Thus, the TO-LA interaction constitutes the dominant optical phonon-acoustic phonon

interaction. This means, from the above discussion, that τ2 should become smaller with

decrease in temperature.

From the above discussion we can infer that, both e−-acoustic phonon and optical phonon-

acoustic phonon interactions qualitatively explain the observed trend. This implies

that, the contribution to τ2 is a mixture of both types of interactions, and the tempera-

ture sensitivity of both the channels may account for the more pronounced temperature

dependence.



Chapter 4

Conclusion and Outlook

During the course of this thesis we understood that lead telluride has some unexpected

characteristics which are contradictory to those observed in most semiconductors with

similar structure. Notable amongst these peculiarities was the band gap behavior with

temperature. It increases with temperature and this is not the case with most semi-

conductors which show an opposite trend, such as Si for example. These peculiari-

ties extend to the observed low thermal conductivity in PbTe as well. From recent

inelastic neutron scattering studies on PbTe [13], we understood that strong phonon-

phonon (TO-LA) interactions can be responsible for the observed low lattice thermal

conductivity. These studies motivated us to further investigate the dynamics of these

interactions. We observed, based on ultrafast techniques, some unexpected trends in

the electron-phonon and phonon-phonon relaxation times. We saw that, the interac-

tion time constants associated with electron-phonon and phonon-phonon interactions

decrease with temperature. This is contradictory to theoretical calculations for these

materials (lead chalcogenides). However, we also noticed that these calculations don’t

take into account TO and LA mode softening behavior. Moreover, we realized that only

possible way to exaplain the observed trends is by considering mode softening and the

anharmonic coupling of the TO and LA modes. Thus, in the process of understanding

carrier dynamics, we obtained data consistent with the conclusions of Delaire, et.al.

Coherent oscillations were also part of the observation in our experiment. We deduced

that these oscillations are a combination of three oscillator modes, 3.5 THz, 1.5 THz,

and 0.9 THz. Also, the 0.9 THz mode becomes prominent with increasing temperature

and 1.5 THz and 3.5 THz modes become less important. We were able to explain the

behavior of the high frequency modes on the basis of interbranch squeezing at the X-

point resulting in squeezed phonons. The behavior of 0.9 THz mode, however, still

remains elusive and needs further investigation.

45
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In this project we studied the temperature behavior of TO+LA modes on a time domain

basis. The next approach would be to supplement the observations with temperature

dependent spontaneous Raman measurements which is a direct method of studying

phonon modes. This will also help to understand the TO mode softening with temper-

ature due to flat dispersion relation and the sharp density of states peak at the Γ -point.

Our current measurements lacks carrier dynamics behavior between 100 K and room

temperature. Thus, next step would be to include temperature sensitive carrier dy-

namics studies in those temperature range. In this thesis, we qualitatively accounted

for the carrier dynamics. So, it would be appropriate to model these dynamics with

three temperature model to account for multiple subsystem that exchange energy in

this material.
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Appendix A

Temporal resolution in a

pump-probe experiment

As discussed earlier in Chapter 1, the temporal resolution in a pump-probe experiment

mostly boils down to pulse width. To be more specific, the pump-probe cross correla-

tion pulse width. To illustrate this, we consider a simple case of semiconductors. We

start by assuming an instantaneous system response R(t) to pump excitation and, the

decay dynamics to have an exponential dependence (with pump-probe delay time t

as the parameter), as the functional form(typical of most semiconductor materials, for

example, GaAs):

R(t) = θ(t).
e−e,e−ph,ph−ph...∑

i

(Ai .exp[−t/τi]) (A.1)

θ(t) corresponds to an unit step function with θ(t) = 0 for t < 0 and θ(t) = 1 for

t ≥ 1 picosecond(ps) highlighting our assumpition of instantaneous system response.

The summation is over various scattering mechanisms in a semiconductor material as

discussed in sections 2.1.2 and 2.1.4 . Because the energy delivered by the pump(p(t))

beam is not instantaneous, but over a a pulse width duration(σ ), the observed system

response would be a convolution of p(t) and R(t), G(t):

G(t) =
∫ ∞
−∞
dt
′
R(t).p(t

′
− t) (A.2)

Probing with finite pulse width would then imply a second convolution of probe pulse

form(pr(t), pulse width σ ) with G(t), so that the observed signal would be G̃(t):

49
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G̃(t) =
∫ ∞
−∞
dt
′
G(t).pr(t

′
− t) (A.3)

This upon appropriate simplification would yield, for gaussian pulse shape:

G̃(t) =
e−e,e−ph,ph−ph...∑

i

αi

[
exp[−t/τi].[1 + erf

(√
2σ

2τi
− t
√

2σ

)
]
]

(A.4)

G̃(t) represents the pump-probe signal as a function of time. Figure A.1 represents

the system response for different values of pump-probe cross correlation pulse width

divided by
√

2 (σ ). And, in the figure, G̃(t) = C(t) ∗R(t) where C(t) is the pump-probe

cross correlation function which is a way of representing G̃(t):

G̃(t) = pr(t) ∗ (p(t) ∗R(t))︸       ︷︷       ︸
G(t)

= (pr(t) ∗ p(t))︸        ︷︷        ︸
C(t)

∗R(t) (A.5)

Where * represents convolution of functions. For the purpose of illustration, we have

assumed a two exponential component in equation(A.1) and considered one of the

components to have a time constant of 1 ps and the other to be 10 ps. We consider

3 different values of pump-probe pulse width 0.1 ps, 1 ps, 10 ps.
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Figure A.1: Left to right(top): System response plotted along with the component
decay channels(left). The system response as measured for a σ = 0.1 ps. Notice the
close resemblance between actual response and the pulse stimulated response; all the
decay components are well resolved(right). Left to right(bottom): The system fast re-
sponse is mostly unresolved at σ = 1 ps(left). For σ = 10 ps, the 1 ps components is
completely obscured while 10ps component is mostly unresolved(right). Comparing

with instantaneous response would reveal these distinctions better.





Appendix B

Global fit algorithm for coherent

oscillations

Figure B.1: The Global fit algorithm.
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Appendix C

Spot size measurement and carrier

density estimation
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Figure C.1: Probe beam profile with dprobe,a ≈ 29.64 µm and dprobe,b ≈ 29.05 µm

The spot size measurement was done with a THORLABS DCC1545M CMOS camera (1

pixel ≈ 5.2 µm2) with the use of neutral density filters (to prevent detector saturation

55



Appendix C. Spot Size Measurement 56

Pixel Count

P
ix

el
 C

ou
nt

75 80 85 90 95 100 105 110 115

55

60

65

70

75

80

85

Figure C.2: Pump beam profile with dpump,a ≈ 73.96 µm and dpump,b ≈ 62.32 µm

and damage). The positioning of the camera was as close to the actual sample config-

uration during the course of pump-probe experiment. In order to calculate the effec-

tive carrier density excited by the pump(Nc), we calculate the effective pump-fluence

first [37] :

fef f = fc

1 +
(
wx
w0

)21 +
(
wy
w0

)2−
1
2

(C.1)

where fc(1.927 Jcm−2) represents the normal incidence pump fluence(this assumption

is strictly not valid in our case as the pump is incident at an angle, however, this can

be used for a rough estimate). wx and wy corresponds to half of the minor and major

axis dimensions of the probe spot(14.82 µm and 14.53 µm). w0 is the pump beam

radii(68.14 µm). The calculated fc then corresponds to 1.6 mJcm−2. This is then used

to calculate Nc [37] :

Nc = (1−Rn)fef f

(
α
Eph

)
(C.2)

Here, Rn corresponds to pump normal incidence reflectivity(assumed value: ), and
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Eph the photon energy at the central pump wavelength(at 800 nm, 2.48 × 10−19 J). α

corresponds to the absorption coefficient of the material at this pump wavelength. This

gives the carrier density at the surface of the material. On assuming a exponential

decay dependence for the absorbed pump radiation, we can estimate the total carrier

density:

Ntotal =
w2

0
δ

∫ δ

0
dz.exp(−αz)Nc (C.3)

so that,Ntotal corresponds to 2.1×1020 at 300 K and 2.9×1020 at 5 K. Here, δ is the pene-

tration depth at 800 nm and we have assumed the absorption to happen in a cylindrical

volume of depth δ.
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