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1. Introduction

1.1. Motivation

In the late 19th century, Michael Faraday and John Kerr discovered two effects that started the
field of magneto-optics. Faraday observed that the polarization of light transmitted through
magnetized materials is changed, Kerr found the same to be true a few years later for light
reflected from magnetic samples. The effects are today termed Faraday effect and magneto-
optical Kerr effect (MOKE, pictured in figure 1.1) after their discoverers and both are caused
by a magnetization of the sample — either through an applied external field or through rem-

nant magnetic order, for example in ferromagnets. To first order, the sizes of both Faraday

M®

Figure 1.1.: An illustration of the magneto-optical Kerr effect. Linearly polarized light is reflected
from a sample with magnetization M and its polarization state is changed: After reflec-
tion, the polarization is elliptical with rotation angle 8 and ellipticity angle a.

effect and MOKE are proportional to the magnetization of the sample[1], which is why they
can be used as an effective optical probe for magnetization behavior. The main advantages in
comparison to other techniques like SQUID are the possibility of quick in-situ measurements
and spatial resolution using MOKE microscopy. In a SQUID setup, the averaged magnetiza-
tion of the whole sample is determined; with a MOKE microscope one can resolve spatial
features like magnetic domains, the upper resolution bound being the Abbe diffraction limit
of the employed system. Also for very small samples or thin films, MOKE measurements can
give good results.

The high spatial resolution led to the introduction of magneto-optical (MO) storage media



in the 1980s[2], with widespread commercial success in the 1990s. In one such medium, the
MiniDisc, the data is recorded magnetically and read out with a laser using magneto-optical
effects. While these storage solutions have today have mostly lost their relevance, MO ef-
fects continue to play an important role in science. They can give insights into the internal
structure and also, with their time-resolved analysis on the femtosecond scale, dynamics of
materials.

During the course of this thesis, a polarization spectrometer was built. It can be used to
measure MO effects in both reflection and transmission geometries and features a super-
conducting magnet with a built-in cryostat. The direction of the magnetic field is parallel
to the incoming light, which in terms of MOKE is called the "polar" Kerr effect (see figure

1.2). Cuy0SeO3 was chosen as the first material to be investigated. It is an insulator that is
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Figure 1.2.: Three different MOKE geometries depending on the orientation of the incoming light
and the magnetization direction of the sample: Longitudinal, polar and transverse. The
polar configuration is often chosen as it causes the largest change in polarization[3].
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Figure 1.3.: SQUID data from a publication by Adams et al.[4]. Given on the left are the magnetization
curves of the Cuy;OSeO3 sample for different temperatures. In the first derivative of the
magnetization data, given on the right for two temperatures, they find a distinct dip
depending on whether the sample is in the skyrmion phase (k) or not (j).

the object of much current research because it hosts a skyrmion phase (for more details see

section 3.1). The reasons for doing magneto-optical spectroscopy on this compound were



twofold: Firstly, we wanted to find out whether the skyrmion lattice has a special effect on
the polarization state of the reflected light. Secondly, because the MOKE signal is approxi-
mately proportional to the magnetization of the material, we expected to replicate the kinks
in the magnetization behavior around the skyrmion phase as found by Adams et al. in SQUID

measurements (see figure 1.3).

1.2. Fundamentals

Polarized Light
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Figure 1.4.: Illustration of a linearly polarized wave. E and B field vectors are perpendicular and stay
within the same planes parallel to the propagation vector at all times. Image from [5].

Light traveling in free space is a transverse electromagnetic wave with electric and magnetic
fields perpendicular to each other, such that E X B points in the wave’s propagation direction.
As such, it can be polarized: If the electric field vector oscillates in a fixed direction in space
that does not change in time, the light is linearly polarized (see figure 1.4). If the oscillation
direction is not constant in time, the electric field vector traces out an ellipse and the light is
elliptically polarized. In figure 1.5b, 0 is the angle between the ellipse’s major axis (in blue)
and the x-axis. The ratio of the minor and major axes is called ellipticity, € = é‘::ﬁ, often
expressed with an angle such that tana = e.

The special case € = 1leads to circular polarization. This is depicted in figure 1.5a and further

explained in the next section.



Jones Calculus

In 1941, R. C. Jones proposed[6] an elegant formalism for the description of fully polarized
(monochromatic) light that employs vectors to describe the polarization state and matrices
to describe polarizing elements. For a light ray propagating in the z-direction, the electric

field vector lies in the x-y plane. Its time-dependent oscillation can be described by:
E.(t E i(kz—wt)
E(t) = () _ Ox?k
Ey(t) EOyel( Z—wt+Q)

:( Eox | itkz-at) (1.1)
E0y€i¢
J

The vector J is called the Jones vector. The phase difference ¢ makes the polarization elliptical
as it shifts the x and y components with respect to each other (see figure 1.5a).

The special case with Eo, = Eo, and a phase difference ¢ of +7 is called circularly polarized
light. The definition of left (LCP) and right (RCP) circular polarization is a source of lasting
confusion. There exist two different viewpoints: One is describing the rotation from the
point of the receiver. In this case, the electric field vector of figure 1.5a will rotate clockwise
(right-handed) in time. The other, also often used convention looks at the wave from the
point of the source. From there, the electric field vector will seem to rotate counterclockwise
(left-handed). In this thesis, we will look at the light beam from the position of the receiver.

This gives us the following definitions:

RCP:e = — | LCP e, = —|° (1.2)
.e__\/§ e .e+—\/E ; .

Note that a combination of RCP and LCP light with equal amplitudes is again a linearly po-

larized wave.

Bases

While the Cartesian representation with basis vectors X = (}) and y = (9) may be the most
intuitive way to span the polarization vector space, any set of orthogonal vectors can also be
used.

It is often convenient to use the circular polarization states e_ and e, as a basis. For example,
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(a) Nlustration of how two sine waves with a phase dif- (b) An ellipse is the most general polar-
ference overlay to create an elliptical wave. Depicted ization state. Parameters are the ro-
is the special case A¢ = 7 which results in circularly tation of its major axis and the ratio
polarized light. Image created with parts from [7]. of the two axes.

Figure 1.5.: Circular and elliptical polarization

in media with a broken time-reversal symmetry due to a magnetic field, the eigenmodes of
light propagation in the material are circular modes. The transformation matrices to go from

Cartesian to circular representation and its inverse are:

po L1 i) a1 (13)
V2t =i)’ Vo \-i i '

[ =F- [é] - % [i] [§): = F- (f] -5 [_11] (1.4

This will be useful in later chapters.

Elliptical Light

The generalization of circular to elliptical light is straightforward[8]. Using figure 1.5b as
a reference, we start with a circularly polarized (here: e.) Jones vector and scale the x and

y components with Acosa and Asin a, respectively, to get the desired ratio between the



major/minor axis:

1 Acosa

V2

’

(15)

iAsina
The rotation of the ellipse is then achieved by multiplying with a rotation matrix R(6) = (
E” = R(O)E (1.6)

We decompose this vector into circular components using the transformation matrix from

E- =F-E' = A
E. 2

Along the lines of [8], we define a polarization variable { as the ratio of the two components:

the previous section:

(1.7)

e'(cos a — sin ) ]

e %(cosa + sina)

£ = E. _ 26 1+tana _ o2t 1+e€ (18)

E_ 1—-tana 1-—¢€

This allows us to express rotation and ellipticity of the ellipse as functions of this ratio:

-1
T

1
0= -3 arg {, (1.9)

Optical Elements

In Jones calculus, linear optical elements are described by 2 X 2-matrices. They are applied to
the Jones vector to receive the corresponding new polarization states. In the case that there
are several optical elements, their respective matrices are multiplied with the Jones vector in

the direction that the light passes them:

Efnal = My - My_1 - ... - My - My - Einitial (1-10)

cos —sinf
sinf cosf

)



As an example: It is intuitively clear that (ideal) polarizers Py and P, that let only light po-

larized in the x/y-direction pass through should have the following matrix representations:

P (Exa)] : [Exa)
Ey(t) 0
{1 0

~ P, =
0 0
SEAus
Ey(t))  \Ey(t)
P = 0 0
o s

Also, their product Py - P, is the zero matrix, which replicates the behavior that crossed
polarizers block light.
The expression for a polarizer at an arbitrary angle and some other optical elements can be

found in table A.1 in the appendix.

Lorentz Oscillator in a Magnetic Field

The magneto-optical Kerr effect has its origins in quantum effects such as spin-orbit coupling
and exchange interaction[9]. Nevertheless, we can provide a classical example (adapted from
[10]) that illustrates how an external magnetic field can cause Kerr and Faraday effects: We
will calculate the Lorentz oscillator model within an external magnetic field. In this model,
the electron (or the electron "cloud") with mass m is connected to the infinitely heavy nucleus
via a spring force. There is also a damping term, as the moving electron is expected to lose
energy by emitting radiation. An external electric field, like that of an electromagnetic wave,
is the driving force. The external magnetic field (this may also be an internal magnetization)

acts on the moving electron via the Lorentz force. The equation of motion is:

P+yi+olr=——(E+ixB) (1.11)
m
Let the B field be in the z-direction, B = (00 B)T, as well as the propagation vector of the

incoming light. This implies that the E-field of the light oscillates in the x-y plane: E(t) =

(Ex(t) Ey(t) 0)T = 7! (Exo Ey 0)T. Using the ansatz r = roe™ ! we find:

(wo — iyw — w¥)zp = 0 (1.12)

10



This is the equation for a damped harmonic oscillator without a driving force, i.e. in the
z-direction neither the electric nor the magnetic field are felt by the electron. We will thus
ignore the z coordinate from now on.

For x and y we get a set of coupled equations:

( A —iww,

iww, A

Ex
Al L el (1.13)
Yo m\Ey

2, The matrix in question can be diagonalized by

With o, = %andA = wy — iyo —

transforming the system to a circular basis. We define:

+ .

o 1= Xo + iy, Ty = X0 — iy (1.14)

Eg = ExO + iEy(), EO_ ‘= Ly — iEyO (115)

Along with this, we use the transformation matrices from equation 1.3 to go from Cartesian
to circular representation. Applying this to equation 1.13, we receive a solution in terms of

the new variables:

F A —iww, Pl ro A= wao 0 ro N E;
iww, A o 0 A+ oo \ry m \E,
eE’ eE;
~ry = S ry = 0 (1.16)
m(A — ww;.) m(A + ww,)

From this, we can calculate the macroscopic polarization (for N electrons), the susceptibility

and the dielectric function:

pP* Ner® Ner®
Pt = qui(t) Y Xi = o EE = e ~eT =1+ 7
. Ne?
= 1.17
¢ m(A ¥ ww.) (1.17)

We have found the dielectric function with different elements for right and left circularly
polarized light. It can be written as a matrix &g, = (5(; 50, ) This implies that there are two
refractive indices n, = +/ex for RCP and LCP light, respectively. Although the underlying
theory is much more complex in reality, this is an illustrative example of the dielectric tensor
properties that cause Faraday and Kerr effects in the material.

If we perform the transformation back to Cartesian coordinates, we find that in this basis

11



there are antisymmetric off-diagonal terms that we will discuss in the next sections:

_ e+ e (et —¢7)
€Cart = F lt‘:circF = - _ . _ (1.18)
—i(e"—€7) € +¢

Connection between measured quantities and reflective properties

We now want to derive a relation between the measurable Kerr angle 6 and ellipticity €, on
one hand and the dielectric tensor on the other hand.

Although we will not achieve perfect normal incidence because of limitations in our mea-
surement setup (see section 2), the expected angle between incoming and reflected beam is

small enough to treat it as such. The Fresnel formula for reflection at normal incidence is[11]:

o) =) 1 (1.19)

Here, n(w) denotes the complex refractive index which is closely related to the dielectric

function/tensor:
ii=Vé=n+ik (1.20)

We will drop the notation of the w-dependence from now on.

The complex reflection coefficient p describes the ratio in intensity between incident and
reflected light, as well as a phase difference 0 introduced in the reflection process. As we
have established in the previous section, we expect a difference in reflection for right and

left circularly polarized light:

i9+ fl+_1_\/§i_1
ny +1 \/§i+1

(1.21)

In our particular measurement geometry, the incoming light E;, is linearly polarized; the
outgoing beam E,,;; will in general have an elliptical polarization. Its polarization in terms

of { as defined in section 1.2 will be:

E + E; + ~+ ~+
Jout = -l p~ = /3— (1.22)
Eout—  En-p-  p-

v o, —
~ fout = r_el(9+ 6-) (1.23)

12



The change in polarization and ellipticity as introduced by the Kerr-active sample is then

quantified as (compare to equation 1.9):

Ty

0, = —%(& —0), ==

-1 -

= (1.24)
+1 ry +7_

Note that both r. and 0. are frequency-dependent and that this is only valid for the polar

geometry.

The Dielectric Tensor and Origins of MOKE

Under the influence of external electric fields (including light), charges in a material are
displaced and the material becomes polarized. Excluding higher order responses, there will

be a linear dependence between E and said polarization:
P = y&kE, D = gE +P = ¢(1+ y)E, e=1+y (1.25)

In anisotropic media, such as solid crystals, the response of the medium is in general not
aligned with the direction of the external field. This means that in equation 1.25, the suscep-

tibility y is not a scalar, but a tensor. The quantity ¢ = 1 + y is called the dielectric tensor.

Exx Exy Exz Xxx  Xxy  Xxz
£=eyx ey | =1+ xyx Xy Xz (1.26)
E2x  Ezy €z Xex  Xzy  Xzz

In the simplified case of no external magnetic field, no absorption and no optical activity, the
susceptibility tensor can be diagonalized along a set of principal axes. We then end up with
a symmetric tensor whose off-diagonal elements are zero.

In the simplest cases of an isotropic (cubic) and a uniaxial (trigonal/tetragonal/hexagonal)

13



crystal, the dielectric tensor is simplified to:

a 0 0
Ecubic = |0 a O], Exx = Eyy = &z = 4, n=+a
0 0 a
a 0 0 no = a
Euniaxial = a 0f, Exx = &y = 4,6z = b, v = b (1.27)
00 b F

In the cubic material, there is only one refractive index, n. The existence of two refractive
indices in the uniaxial material is the source of linear birefringence, i.e. two beams with
different linear polarizations get refracted differently.

The terms responsible for MOKE and the Faraday effect can be found on the off-diagonals
of the dielectric tensor. These terms arise when time-reversal symmetry is broken in the
material[1], for example as a consequence of an external magnetic field as shown with the
Lorentz oscillator model. The effect of these elements on the Kerr and Faraday rotation will

be quantified in the next section.

Dielectric Tensor and Optical Effects

Starting with a dielectric tensor for a cubic material with off-diagonal elements, we can cal-

culate the Kerr and Faraday angles that will be measured in the material, following the lines

of [8] and [12].

Exx  Exy
E= |-y &x O (1.28)
0 0 &xx

We can diagonalize it by switching to a circular basis:

Exx — Lexy 0 0
ecire = FeF~! = 0 Exx + i€y 0 (1.29)
0 0 Exx

14



For incident light along the z-axis, we can calculate the reflection with eq. 1.19
(1.30)

= éxx L ity
(1.31)

Ny
. ny—1
N =
P ny +1
Using the definition of the polarization variable { from eq. 1.22, we receive:
r=2- (132)
Exy
(1.33)

.E LE
\/1 +i \/1 — 1
Exx gxx 1
+
1

=2-
2
, Exy . Exy . Exy
Exx ¥ Exx Jl * lfxx * Jl lfxx Véxx

If we assume that ¢, is small compared to &y, we can use the approximation V1 +x ~ 1+ 3:

(1.34)

2iexy 1
1) — ey
(1.35)

g N \/a(gxx -

2i€
akd +1

Vgxx(gxx - 1)

We make one more approximation to eq. 1.8, assuming 6 and ¢ to be small:
0 1+E€
{ = e‘”’kﬁ ~ (1 - 2i6) - (1 + 2¢) (1.36)

~ 1 - 2i6 + 2¢;

Equating 1.36 and 1.34, we find:
Op +iep = ——2 (1.37)
Vgxx(gxx - 1)
This connects the Kerr angles to the dielectric tensor.
For the Faraday effect, a similar expression can be calculated:
(1.38)

wd ifxy

O +iep = e =

Here, o is the frequency of the transmitted light and d is the traversed length of the material.

Normal incidence is assumed. The full derivation can be found in [12].

15



2. Polarization Spectrometer Setup

2.1. Schematic

Lock-Ins

AN
€4

Lens2 Aperture 2 PEM Detector

Figure 2.1.: Schematic of the setup — the MOKE configuration is depicted. The angle between inci-
dent and reflected light on the sample is exaggerated here for more visual clarity.

Broadband white light (~250nm up to near IR) is created by a xenon light source, the desired
wavelength is then singled out via a computer-controlled Jobin Yvon MicroHR monochro-
mator with adjustable gratings and color filters. The monochromator has an entrance and an
exit slit that allow for an adjustable spectral width of the monochromated light. The light is
collected and roughly collimated with an off-axis parabolic mirror, almost fully s-polarized
by a Glan-Taylor prism and subsequently chopped with a frequency of ~600Hz. The chopper
frequency serves as the reference for our first lock-in amplifier, which will yield us the DC

intensity of the detected light.

16



The light is focused with a biconvex lens (f = 15cm) and impinges on the sample in the
cryostat at almost normal (with an angle of ~7.5° to the surface normal) incidence with a
spot size of around 1mm?. The reflected light is refocused by a second f = 15cm lens and
passes a photo-elastic modulator (PEM, described in section 2.2) and a second Glan-Taylor
prism set at an angle of 135°. The PEM modulation frequency of 50kHz (and its second har-
monic, see section 2.2) is the reference for the second lock-in amplifier. The light is detected
by a silicon photodiode with an integrated amplifier; the signal is subsequently passed on to
both lock-ins.

The original plans featured an off-axis parabolic mirror as a focusing device, as it is achro-
matic and should deliver the same spot size over the whole wavelength range. For reasons
discussed in the appendix A.1, it changes the polarization of the incident light and cannot be
used in the positions of the lenses as they are given in figure 2.1. Polarizing the light after fo-
cusing would be an option, but for the Glan-Taylor prisms to achieve good extinction ratios,
the incoming light has to be as collimated as possible. Using a different kind of polarizer,
e.g. sheet polarizers would mitigate the problem, but these cannot deliver the performance
of Glan-Taylor prisms.

The measurement process has been mostly automated with the help of two custem LabVIEW

programs. Screenshots and a description of the software can be found in the appendix A.4.

2.2. Photoelastic Modulator and the Polarization Modulation

Technique

The polarization modulation technique as described by Sato[13] and others[8][12] improves
on former techniques that involve manual rotation of polarizers or Faraday rotators. The cen-
tral component of the setup is the photo-elastic modulator (PEM): It contains a piezoelectric
element that introduces vibrations in the kHz range into a bar of transparent material (fused
silica, in our case) that exhibits stress birefringence. The vibration frequency is tuned with
respect to the speed of sound and the length of the bar, such that a standing wave with a
maximum at the center is formed.

Light passing through the PEM will experience a periodic phase retardation due to stress bire-
fringence — in so far as a polarization component is parallel to the optical axis of the PEM,
typically the horizontal axis. The amplitude of retardation can be set on the PEM controller.
In the special case of a 45° linearly polarized incoming wave and a retardation amplitude of
/2, the modulated retardation will lead to a continuous variation between +45° linearly and

left-/right-circularly polarized states (see figure 2.2). In combination with two linear polariz-

17
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Figure 2.2.: A photoelastic modulator acting on a 45° LP incoming light beam. One period depicted
above takes around 20pus. The retardation amplitude is set to #/2.

ers and a lock-in amplifier, the PEM causes characteristic changes depending on polarization
ellipticity and rotation that can be picked up with a detector. The mathematical description
will be given in the next section.

Because of its high modulation frequency, the PEM/lock-in combination is rather insensitive

to noise and allows for very accurate measurements.

Calculation for Our Setup

Figure 2.3.: Schematic of the polarizing elements in the setup. Monochromated light is polarized in
the y-direction by polarizer 1, reflected by the sample, modulated by the PEM, passes po-
larizer 2 and is collected by the detector. The symbols of the Jones matrices are attached.

We can calculate the intensity measured at the end of the beam path by representing each
optical element in figure 2.3 with its corresponding Jones matrix.

We start out with unpolarized monochromated light. The first polarizer is set to 90° with

18



respect to the x-axis and gives us light polarized in the y-direction, (), as a starting point.
As introduced in section 1.2, the sample has different reflection coefficients for left and right

circularly polarized light. In a circular basis, its Jones matrix is given by:

(5 0
Pcirc = 0 ﬁ_

Since we want to do the rest of the calculation in a Cartesian basis, we use the transformation

matrices F and F~! to switch representations:

_ 1 1 1 1 (1 1
Pcartesian = F 1,DcircF = @ (—i i) * Pcirc * % (1 —iJ

The PEM is a phase retarder as described in table A.1, with the addition that the amount of

retardation is now a periodic function in time:
el 0
O = | 6(t) = & sin wt
e 2

The second polarizer (the analyzer) is set to an angle of 135° (or 45°). Other configurations

are possible, but will yield a worse signal-to-noise ratio in most experiments[14]. Thus, our

|

Combining all the elements, the full Jones matrix representation of the beam path is:

general expression is simplified:

2 3r 3T in 3T
COoS” =~ COS =~ SIn =~
A(135°) = [ § ! 4] = (

(1 3T g 3T (12 31
Sll’14COS4 Sll’l4

D= D=
NI— D=

Eout =A-0O- F'. Peire * F ((1)) (2.1)
BUEE et 0 1 1)(p. o)(r (o 2.2)
T2 |- Hlo o er) =i i)lo p)l —i)ln '
et (zej‘s(ﬁt—ﬁ—? - </j++/§->} (23)

4 \(p«+ p-) —ie”(ps — p-)
- 6_45 - (i€(ps — po) = (v + o)) - [_11] o

19



The signal intensity arriving at the detector is the absolute squared of this value:

Iout = IEoutl2 (2.5)

S lie (5, = ) = (e + (2:6)

We note here that 5, and j_ are complex valued and of the form p. = r.e’®. We also define
AO = %(9+ — 0_) After a lengthy calculation we receive:
I =

[rff +r2 + (r® = r®)sind + 2r,r_ cos § sin A@] (2.7)

NN

Vi—r—

From equation 1.24 we take the relations 6y = —%(9+ -0_) = —%AH and €, = 7=

We estimate the difference in reflectivity to be small: |r, — r_| < r, + r_. This allows us to

use the following approximations:

~ 2L
¢ §~2r++r_ = 2¢k

~ 1
2.2 ™ 9

Additionally, we use the shorthand R = 1(r? + r%). This gives us the following simplified

equation’:
1 . .
I= ER [1+ 2€sind + cos d sin(—26)] (2.8)

Bessel Function Expansion

We are now able to write the signal as a function of the quantities we want to measure
(6 and €;). However, until now they are superimposed. The strength of the polarization
modulation technique lies in the fact that the two quantities can be extracted from the same
signal simultaneously and with great sensitivity. We remember that the phase retardation
d is not a constant value but is periodically modulated by the PEM: §(¢) = §y sin wt. This
allows a lock-in amplifier to separate the two.

Mathematically, we can show this by doing a Fourier decomposition on equation 2.8 that

involves Bessel functions. We use the following identities (the proof can be found in the

For an analyzer setting of 45° instead of 135°, the signs of the second and third term will be reversed.

20



appendix A.2):

cos(dg sin(wt)) = Jo(Jp) + 2 Z]z,,(&)) cos(2nwt)
n=1
= Jo(0) + 2J2(d0) cos(2wt) + O(Js(do)), (2.9)
sin(Jy sin(wt)) = 2 i]2n+1(50) sin((2n + 1)wt)
n=0

= 2J1(8o) sin(wt) + O(J5(do)) (2.10)

This allows us to expand the intensity in terms of frequency components, orders higher than

1.0 ‘ ‘ ‘ ‘ ‘ ‘_ JO(T) b
08k X ~ 2.63 Ji(z) |
0.6} / — A

Figure 2.4.: Three Bessel functions of the first kind. The first intersection of J; and J; is circled, as

we will use this value as a compromise for good signal-to-noise ratios in both ellipticity
and rotation.

2w are ignored. The component without temporally modulated intensity will be called 1(0).

I =1(0) + I(w) + I(2w) + higher orders,

1(0) = 2(1 + 2J(8) sin(—26%)), (2.11)
I(w) = 5(471(S0) ). (2.12)
I(2w) = 8(212(80) sin(—26y)) (2.13)

The values of I(w) and I(2w) depend on the retardation amplitude . For values of 105.5°
and 175° respectively, the Bessel functions of first and second order are at a local maximum,
thus maximizing our measurable signals. To get strong signals for both, we pick a retardation

amplitude of around 150.7° (2.63rad) which is at the first intersection of J; and J, (see figure
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2.4).

Detectors and amplifiers may show different sensitivities to DC values and the modulated
w and 2w signals which are in the kHz range. In the following, we will look at the actual
measured signals (termed Ipc, Ir and I;7) and introduce constants A and B to capture the
dependence on the measurement apparatus. To extract the Kerr rotation and ellipticity, we
will divide the PEM-modulated signals by the DC signal:

I g0 i

e~ A T+ 20 (00) sin(=20) 4AJ1(8)ex = const. - €, (2.14)
I i (—
Lf _p. 2R00sinG200 pr 50 = const. - 0 (2.15)

Inc 1+ 2Jo(8) sin(—26%)

We used the approximation 2Jy(Jy) sin 26, < 1 to get rid of the second term in equation 2.11
and the small angle approximation sin(—26;) = —26 to simplify equation 2.13. It should be
noted that this holds well for typical small rotation angles below 1° we expect in e.g. Nickel
but introduces a progressively larger error for bigger angles which should be kept in mind.

Within this approximation, we now find a linear dependence between our Kerr angles and

3 — exact value linear approximation

Ly/Ipc (@.u.)

INC

,3 L L I
-100 -50 0 50 100
6 in degrees

Figure 2.5.: Our linear approximation works only for small angles.

. I I ) )
the fractions Ipic and % The constants that link these fractions to the actual values can be

determined by calibration.
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Calibration
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(a) Ellipticity calibration curve (b) Rotation calibration curve

Figure 2.6.: Example calibration curves. The spectra show how much the signal changes for a change
of one degree.

Rotation

The calibration of the Kerr rotation is straightforward. The rotation of the first polarizer (see
figure 2.3) creates a rotated linear polarization that influences the signal in the same way that
a Kerr-active sample would. By turning this polarizer by a known and fixed amount ¢,, we

can quantify the signal change that this rotation induces:

Ly

I = —4BJ>(80) o (2.16)
pC

%o

By comparison with an angle 2¢, or the negative —¢, we can determine the constant:

sz sz
Tocly, — Toc|_g,
—4BJ2(8) = 26 (2.17)
0

Note that the detector may not have a constant response over the whole wavelength range
to be measured. This makes B = B(1) a quantity that depends also on the wavelength of the
light (see figure 2.6b).
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Ellipticity

Calibration of the ellipticity is simple in theory: A quarter-wave plate (see table A.1) is placed
in the beam path between the PEM and the second polarizer. It causes an additional phase
retardation of 7, thus modifying equation 2.8: By replacing § with 6 + 7, we receive cos 6 for

sin(6 + %) and -sin § for cos(d + 7):

I=

|

[1+ 2€, cosd — sin § sin(—26%)] (2.18)

Carrying out the same expansions and approximations as before will now yield:

_ I
g Ipc

2¢

I
Ipc

~%o

4A]1(6o) = (2.19)

In practice, this calibration is more difficult. Again, A = A(A) depends on the wavelength of
the light, but standard quarter-wave plates are usually only specified for single wavelengths
or for small spectral ranges. A Berek compensator can be used over a large wavelength range,
but has to be adjusted by hand for each particular wavelength, which for our broad spectral
range is tedious.

A solution to this particular problem is provided by a Fresnel rhomb (figure 2.7), which is
achromatic over a large spectral range. Its major downside is that the beam exits the rhomb
slightly below and/or to the side of its original position. This means that a realignment of

the setup is necessary which should be avoided in measurement situations.

r
&
S

Figure 2.7.: For an incoming beam with 45° linear polarization, a Fresnel rhomb successively intro-
duces a 7 phase shift with two internal reflections. Unfortunately, the outgoing beam
lies in a different plane.
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3. Overview on Cu;0Se0O3

3.1. Structure

Cu,0Se0s3 is a magneto-electric[15] compound that hosts a skyrmion phase[16]. It shares
the chiral and cubic B20 crystal structure with other discovered skyrmion compounds like
MnSi and FeGe, but in contrast to these is an insulator. The different magnetic phases and the
presence of a skyrmion lattice in this compound have been studied by means of small-angle
neutron scattering[4]. This yields a rich phase diagram with the skyrmion phase located in

a small pocket around 60K (see figure 3.1a). The crystal structure of Cu;OSeOs is depicted in

120 B|I<111>] |Bl|<100>||B|I<110>|[B||<111>

(@)

<110>

100 F

| conical

‘uow ‘puels / sjunod

& 60
40
20 - B=24mT
® B[ <111> T=570K
0O 20 40 60 56 58 56 58 56 58 0 -0.02  -0.01 0 0.01 0.02
T(K) TK  T(K) T(K) q, (A7)
(a) Magnetic phase diagram for CuyOSeOs. Below T,, (b) SANS image of the six-fold sym-
helical, conical, skyrmion and ferrimagnetic order- metry encountered in the skyrmion
ing is found depending on the external applied field. lattice phase, the magnetic field is

aligned parallel to the neutron beam.

Figure 3.1.: Magnetic phases and a scan obtained with small-angle neutron scattering experiments
performed on CuyOSeOs3 by Adams et al. [4]

figure 3.2a. There are two different kinds of copper sites in the unit cell, marked green and
blue depending on the configuration of their oxygen ligands. The number of oxygen ions
around the copper sites is the same in both cases, forming either a distorted square pyramid
or a distorted trigonal bipyramid. This leads to different surroundings and a different crystal
field splitting for the copper ions[15].

The copper ions are mainly responsible for the magnetic properties of Cu;0SeOs. Neglecting
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the other constituents, there are four copper tetrahedra in the unit cell, see figure 3.2b. DFT
calculations show that the interactions within these tetrahedra are strong and that neigh-
boring tetrahedra are comparatively weakly coupled. This has led to a multi-scale approach
to explain magnetic properties[17]: The tetrahedra are in a robust (excitation gap of ~275K)
3-up-1-down ground state and have an effective total spin of 1 (see figure 3.2b). The point
is made that these rigid spin-1 clusters can be considered the building blocks of the mag-
netic structure and that the individual spins themselves are not of great importance at lower

temperatures.

(a) Unit cell of Cu;0SeQs, adapted from [16]. (b) Simplified picture of the Cu;0SeO; unit
cell. The relevant copper sites form tetra-
hedra. Figure from [18]

Figure 3.2.: Crystal structure of Cu;OSeOs3

3.2. Magnetism in Cu;0SeO;

The interesting magnetic structures in Cu;OSeOs3 and other B20 compounds are caused by
the combination of different effects with different energy scales. Ferromagnetic coupling of
spins (or, in this particular case, clusters) is the strongest ordering mechanism: It can be

described by a Heisenberg Hamiltonian of the form:

1
HH = —E IZ:J]U'S,' . Sj (31)

i#]

For positive J; the system will prefer a parallel alignment of spins.

The crystal structure of Cu;OSeOs belongs to the low-symmetry cubic P2;3 space group[19].
It contains a threefold rotation around (111) and a screw axis along (100), but lacks many
common cubic symmetry operations. Most notably absent is inversion symmetry. This

causes the crystal to be inherently chiral and is a condition for the occurrence of the Dzyaloshinskii-
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Moriya (DM) interaction. Its basic Hamiltonian has the form:

1
Hpyp = _E ZJ: Dij . (S,' X Sj) (3.2)
i#]
Dzyaloshinskii predicted[20] in 1958 that in low-symmetry systems an antisymmetric ex-

change interaction of the form 3.2 can exist. Moriya worked out the microscopic theory

two years later and found spin-orbit coupling to be a possible mechanism. In the simplest

Si ® Dij Sj
Figure 3.3.: Sketch of a DM geometry with one ligand.

case, the DM exchange interaction between two ions is mediated by a single third ligand
(figure 3.3). The orientation of D;; is perpendicular to the triangle spanned by the three ions:
Djj o r; X 1. If they are perfectly aligned, the cross product, and with it the DM interaction,
is zero. The magnitude of the DM vector depends on the strength of the spin-orbit coupling
in the material and is in general considerably smaller than Jj;.

The combination of Heisenberg and DM exchange interaction leads to the formation of
twisted magnetic structures with a long period compared to the unit cell: The Heisenberg
term wants to align the spins uniformly, the DM energy is minimized for S; L S;. The period

of the magnetic helices is thus determined by the ratio ?. [21]

Helical Phase, Conical Phase, Skyrmions

In zero or small applied magnetic field B < B.; and below the critical temperature of around
~60K, Cu;0S8e0s is in a helically ordered magnetic state. Spins twist around a vector q as
shown in figure 3.4a. The modulation period of the helices is 616 + 45 A, considerably larger
than the unit cell. In contrast to MnSi, where the helical modulation is along (111), the he-
lices are observed in the (100) directions at zero field[4]. Multiple domains of (100) helices
with different directions coexist in this phase.

For slightly stronger fields B.; < B < Bz, the multi-domain structure aligns to the magnetic
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field; the helices are now modulated along B. Additionally, the spins are no longer perpen-
dicular to their common q-vector and start to align with the magnetic field. This results in
a nonzero net magnetization along B (see figure 3.4b). The angle of the cone decreases with

increasing magnetic field until a ferrimagnetically ordered state is reached at B.,. For a small

Ly
(N

(a) Helical phase: The (b) Conical phase: The (c) Skyrmion phase:

spins are perpendicu- spins are no longer Ground state for a

lar to the propagation perpendicular to the particular field and

vector q and twist propagation  vector temperature region.

around it. but are slightly tilted Image from [22].
towards B.

Figure 3.4.: Magnetic phases found in Cu,0SeQO3

region of applied field and temperature around 30mT and 60K (see figure 3.1a), the skyrmion
phase is the ground state of the system. These magnetic "knots" have gained considerable sci-
entific attention, as they possess unique topological properties and are promising candidates

for novel magnetic storage devices.
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4. Measurements

4.1. Characterization of the Setup

Spectral Range and Wavelength Resolution

The light source used in the setup is a xenon arc lamp. The lamp glass is designed to cut
off wavelengths below 300nm to reduce the amount of ozone produced in a lab setting. The
detector specifications allow for a measurable range of around 350 to 1000nm. To remove
higher-order reflections from the monochromated light, several long-pass color filters can be
used. Lamp spectra taken with different filters in place can be found in figure 4.1. Automatic

filter switching has been built into the measurement programs.

— no filter
—  320nm LP
550nm LP
630nm LP
830nm LP
5
O
=
<
200 300 4(50 5(50 6(50 7(50 8(50 9(50 1000

Wavelength (nm)

Figure 4.1.: Spectra as emitted by the Xe lamp and measured by the Thorlabs PDA100A photodetec-
tor. The available long-pass color filters are listed. Wavelength step size: 5nm.

With the two slits of the monochromator, one can change the linewidth of the monochro-
mated light. Narrower slits lead to a smaller FWHM. An exemplary measurement has been
done at a wavelength of 548nm: As can be seen in figure 4.2, there is a trade-off between light
intensity and linewidth. The achievable range of FWHM at 548nm lies between ~20nm (for
a slit width of 2mm) and ~3nm (for a slit width of 0.25mm). This limits our achievable wave-

length resolution and should be changed in unison with the step size in the measurement
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software for best results.

60000

— 2mm
— 1.75mm
— 1.5mm
1.25 mm
40000 | B 1 mm
0.75 mm
0.5 mm
0.25 mm

50000+

30000+

Counts

20000

10000

O - I L L L L N - L
520 530 540 550 560 570 580
Wavelength (nm)

Figure 4.2.: Dependence of the linewidth of the monochromated light on the slit width; measured
with an rgb lasersystems Qmini spectrometer.

Noise and resolution

The achievable resolution of our setup is limited by the the amount of noise in the measured
quantities. In the Kerr geometry, the measured angles are usually small, so a good resolution
is needed. To test the noise floor of the setup, we set the first polarizer to a particular rotation
value and record the rotation signal in time, as reflected from a representative sample. Ideally,
the fluctuations in the measured value should be as small as possible. The standard deviations
oy of the measured values were taken. Some exemplary values can be found in the table
below. The settings of the entrance an exit slits give us an FWHM of around 15nm for the

wavelength.

Wavelength (nm) 400 540 800

NENGEI G R Sl T R R (9l 6.15 107> | 3.58 -107° | 13.01-107°

These values will depend on different factors:

Reflectivity: The values above were measured on a Cu;OSeO3 sample that shows only ~ 2%
reflected intensity in comparison to an aluminum mirror. For a more reflective surface,

the signal-to-noise ratio will be substantially better.

Integration time: Prolonging the integration time set on the lock-in amplifiers will reduce

the noise level, with the cost of a longer measurement.
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Stability: Vibrations in both sample and optics can increase the noise level. For example:
In the measurements above, the vacuum pump of the cryostat was still running. If

maximum sensitivity is crucial, all pumps can be turned off.

Lamp intensity: The intensity output of our light source is strongly wavelength-dependent

(see figure 4.1). This will worsen the noise level in some regions of low intensity.

Test Measurement on Nickel

To test the measurement setup, we measured the Kerr rotation of Nickel, which displays a
comparatively small Kerr rotation, using a polished polycristalline Nickel plate of around

5mm X 5mm size. The measurement procedure is as follows:

+ The Nickel plate is brought into magnetic saturation in an applied field B parallel to
the incoming light

+ The monochromator and PEM traverse the wavelength range with a predefined step

size; Ipc, Iy and I,; are recorded for every step

+ The measurement is repeated for an applied field of -B

The Kerr rotation of Nickel is relatively small. Additionally, the beam path contains poten-
tially birefringent elements like lenses that may cause a slight change in the measured values.
We use that fact that the Kerr effect changes sign when the magnetic field is flipped and use

the measurements at +B and -B to isolate the antisymmetric component:
L 1(L
= (@)
-B

Ipc antisym. 2 \Ipc
This calculation also eliminates potential small misalignments of the polarizers and gives us

+B Inc

a proper value for zero rotation. After this, the calibration terms as defined in section 2.2 are
applied to the measurement values.

This results in a Kerr rotation as depicted in figure 4.3. Compared to values obtained by
Krinchik[23] and van Engen[24], our values seem to be in good agreement. Little deviations

are expected, because Krinchik and van Engen did measurements on single crystals.

4.2. Sample Preparation

The Cu,;0SeOs samples used were grown in Groningen by Aisha Aqueel and have diameters

between 1 and 3 millimeters. The sample orientation and single-crystallinity was determined
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Figure 4.3.: Comparison of our test measurement on polycristalline Nickel and two measurements
from literature (performed on single crystals). Our data has been smoothed with a
Savitzky-Golay kernel with a window size of 20 data points.

in the institute’s Laue machine. With the help of the CLIP software by O. Schumann[25], the
scanned Laue patterns can be fitted if the space group and lattice parameters of the mate-

rial are known (see figure 4.4a). For now, our setup only supports the polar configuration

(a) Laue image created in the (b) [111] surface of sample
orientation process. 2 after lapping and pol-
ishing.

Figure 4.4.: Sample preparation: Laue image and close-up of the surface taken under a microscope.

(compare to figure 1.1), this means that we have to pick a crystal direction to which both
the applied magnetic field and the incoming light beam are parallel. The [111] direction was
chosen for two reasons: The skyrmion phase pocket seems to have the largest spread in this
magnetization direction (see figure 3.1a). Because it is fairly small in both temperature and
applied magnetic field, we wanted to maximize our chances of hitting it on purpose. Also,
the magneto-electric effect induces an electric polarization P || H in this direction - for an
applied field in the [100] direction no polarization appears. This may have interesting effects
in the polarization behavior.

The samples were lapped and polished to achieve high reflectivity and little scattering (see
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figure 4.4b). In the end, we had surface areas of around 1mm? for sample 1 and 3mm? for
sample 2 to work with, which is big enough for our spectrometer spot size.
The samples were mounted on a copper plate next to a piece of aluminum mirror which

functions as a reference material inside the cryostat.

Sample 1 | Sample 2
Orientation [111] [111]
Approximate diameter | 1.5mm 3mm
Approximate thickness | 0.4mm 1Imm

4.3. Kerr Measurements

We began with measurements on sample 1. In the polarization rotation spectra at a tem-
perature of 10K (see figure 4.5a), we find features around 1.55eV and 3.5eV that show a rel-
atively big rotation but seem to be roughly proportional to the applied field, as is expected
for the Kerr effect. However, we also find an exceptionally large rotation centered around
540nm/2.3eV that does not seem to behave linearly.

The smaller figures below show the dependence of the Kerr rotation on the applied field at
two different energies. On the left, the B-dependence at 800nm seems to be roughly linear up
to the saturation field. The two small bumps at +40mT seem to correspond to the point B in
magnetization behavior where the different qg-domains in the material become aligned and
the sample enters the conical phase. The sudden change around +170mT corresponds to the
field B.; where the spins in the material become ferrimagnetically aligned and a saturation
is reached.

The lineshape! in figure 4.5¢ is very puzzling. It shares the ferrimagnetic saturation point
with the 800nm measurement, but has two sinusoidal oscillation periods with a very large
amplitude in between. It turns out that this is a combination of two effects — an explanation
will be given in section 4.4.

In a temperature-dependent measurement (figure 4.6), we find that the features lose in inten-
sity when going to the critical temperature and beyond. We estimate 7. to be around 56K for
our sample?. The amplitude of the oscillations at 540nm decreases slightly with temperature,

the period length seems to stay approximately constant. The ferrimagnetic saturation field

Tn contrast to the spectrum above, this measurement starts at 6 = 0 for B = 0. This was a deliberate choice,
as for this magnitude of polarization rotation, the small angle approximation we used in section 2.2 starts
to become problematic. We thus wanted to spread the rotation above and below zero as equal as possible.

2This can be seen very nicely in the magnetic phase diagrams in the later section 4.5.

33



Polarization rotation (degrees)

-300mT
-200mT
-120mT
-80mT
-20mT
omT
+20mT
+80mT
+120mT
+200mT
+300mT

25 1.80 1.75 2.00 2.25

2.50

Energy (eV)

2.75 3.00 3.25 3.50

(a) Kerr rotation spectra at 10K for different magnetic field strengths. Detailed behavior at the dotted
lines is shown in figures (b) and (c).
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Figure 4.5.: Kerr rotation spectra and magnetic field sweeps at 10K
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B, decreases with temperature, which leads to the lineshape slowly being "eaten up" from
the sides.

3.0y
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(a) Temperature dependence of the Kerr rotation spectra for B=300mT
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(b) The behavior at 1.55eV/800nm for differ-  (c) The behavior at 2.3eV/540nm for different
ent temperatures. temperatures.

Figure 4.6.: Kerr rotation spectra and magnetic field sweeps for different temperatures.
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Transmission

The needed clue to explain the strange lineshape around 540nm came with the measurement
of the thicker second sample. There, the large irregular peak seems to be missing. A closer
investigation reveals that the peak is not completely gone but just much weaker in amplitude.
Also, now there are more oscillations in the region between —B,; and B, (see figure 4.8a). An
explanation is that the light can transmit through the sample at this particular wavelength
and is Faraday-rotated. This had previously not been taken into account, because the crystal
seemed fully opaque at room temperature. As measurement 4.7a shows, there is indeed a
narrow transmission window progressively opening for lower temperatures.

The progression of the absorption coeflicient « from Ilgrj“ﬁ = e %! at a wavelength of 540nm
is given in figure 4.7b. This should be considered an estimate: The exact measurement of the
sample thickness was not possible during the end phase of this thesis and is assumed to be
1mm=+20%. The reflectance is set to 2% based on some earlier comparisons with an aluminum

mirror, but will of course depend on the surface quality.
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(a) For lower temperatures, a narrow transmission (b) Estimation of the absorption coefficient
window opens. Measured on sample 2. for 540nm light. An error of 20% is given
for the sample thickness.

Figure 4.7.: Transmission properties for different temperatures.

To find out more about the optical properties of Cu;0SeQOs, a preliminary ellipsometry mea-
surement was carried out by I. Vergara and can be found in the appendix A.3. Unfortunately,
no low temperature ellipsometry data was available during the writing of this thesis. This

also prohibits us from calculating the full dielectric tensor.
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4.4. Modelling the Results

Inspired by the transmission measurement and the Kerr data of sample 2, one can find a

phenomenological model for the rotation curves of section 4.3. Because the material becomes

Faraday rotation
\ Kerr
Kerr rotation > :

measured

0.3
200 -160 -100 -50 0 50 100 1650 200
nT)

(a) For a different, thicker (b) The outgoing beam (c) The field vectors of re-

sample the field sweep
around 540nm revealed
more oscillations.  This
was a clue that transmis-
sion and Faraday rotation
are happening.

consists of a reflected,
Kerr rotated part and
a partially transmitted
and back-reflected part
that experiences Faraday
rotation.

flected and partly transmit-
ted light add up to the mea-
sured end result.

Figure 4.8.: An explanation for the nonlinear curves of section 4.3

transparent at around 2.3eV for lower temperatures, part of the incoming light can now
traverse the material and gets reflected from the backside of the crystal (see figure 4.8b).
While the part of the ray that is reflected on the front experiences a normal (presumably
small) Kerr rotation, the part reflected from the back experiences a Faraday rotation over a
length of 2d/ cos 8, where d is the thickness of the crystal and S is the angle of the incident
light relative to the surface normal. The Faraday rotation is field-dependent and can be

described via the linear relation

6 = M(H) -V -1

2d
=M(H)-V- (4.2)
cos 8
Here, V is the Verdet constant with units [%‘i], describing the amount of polarization rotation

per length per field. As further measurements will show, the Verdet constant is extraordinar-
ily large in Cu;0SeQOs. Viewed from the point of the detector, we see a combination of two
electric field vectors: The Kerr-rotated, front-reflected one that shows only a minimal field
dependence and the Faraday-rotated, back-reflected one that strongly rotates depending on
the applied field. The measurement apparatus picks up the sum of the two and this leads to
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the periodic B-dependence we see in the magnetic field sweeps (see figure 4.8c). Note that
this also explains the different result for the thicker sample: Here, the path through the crys-
tal is longer, thus the Faraday rotation is stronger but the back-reflected intensity is weaker.
Thus we see more oscillations and an overall weaker oscillation amplitude.

In summary, we assume the following for our model:
1. We impinge on the sample with fully s-polarized light.
2. For the sake of simplicity we consider only one back-reflection.

3. Absorption in the material follows a Lambert-Beer law: I ~ e~%

2M(H)Vd

4. Both Kerr and Faraday effects are linear in magnetization: 0y = =_- 5

, O = CkM(H)

One can choose either a complex number or a vector representation for the description of
the model. The former one is shorter to write out but here we chose the latter, as it is more
consistent with the Jones calculus used in the rest of the thesis.

For the Kerr-rotated part, the relationship is:
0
Er =71 - R[6(M(H))] - [1] (4.3)

Here, R is a rotation matrix and r is the reflection coefficient?. For the Faraday-rotated part,

we get:

Efr=r(1- r)?- e_% “R[0p(M(H))] - [(1)) (44)

The measured Jones vector then is the sum of the two: Eiot = Ex + Ef. To receive the change
of the total polarization angle, we calculate the angle of the sum vector to the x-axis and

subtract the 90 degrees we started out with:

S

Eot - X T
AO = <(Egop,X) — — = arccos( ) - = (4.5)
T2 Ewtl | 2

The magnetization M(H) of the sample rises approximately linearly up to the ferrimagnetic

saturation point, from where on it stays almost constant. As a starting point, this could be

3If we want to be precise, we have to distinguish between s- and p-reflectivity, especially for the back-reflected
light from inside the sample. For the sake of this model, this is close enough.
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Figure 4.9.: Using the model described in section 4.4 (dotted lines) we try to replicate the lineshape
of the 540nm data.

approximated with a piecewise function (see also figure 4.9a):

—C+Hyy, H < —Hgy
M(H) = {C-H, —Hg < H < Hgy (4.6)
é : Hsat, H > Hsat

This, in combination with the model above, yields a fairly accurate representation of the
lineshape (figure 4.9¢). If we assume that the amount of Kerr rotation around 1.5eV/800nm is
proportional to the actual magnetization of the sample, we can try to improve our fitting with
this information. Using the data in figure 4.9b as the magnetization lineshape, we receive the
fit of figure 4.9d. In conclusion, we feel confident that transmission and back-reflection is

indeed what is causing the peculiar lineshape measured around 540nm.
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4.5. Magnetic Phase Diagram

Although the polarization rotation data we collected around 540nm is a combination of two
effects, we can still extract useful information from it. Similar to the work of T. Adams et al.[4]
who found a skyrmion kink (see figure 1.3) in the derivatives of their SQUID magnetization
data, we do the same in our Kerr/Faraday curves. For this, we take the first and second
derivatives? of the polarization rotation at 540nm for all the measured temperatures. An
example is given in figure 4.10: The derivative of the rotation at 54.7K shows features around
+25mT that are not present in the 51K data (marked with a dotted red line).

If we plot this region of interest for the temperature range of 54K to 56K, we see a feature
fading in at around 30mT/54K and fading out again at 10mT/56K (figure 4.11). Subtle changes
are also observed around 35mT. This corresponds to the boundaries of the skyrmion region

as seen by Adams et al.

b

Polarization rotation (a.u.)
Polarization rotation (a.u

1960 100 5 100 200 1260 700 o 100 200
B (mT) B (mT)
(a) 51K (b) 54.7K

Figure 4.10.: Example derivatives of the rotation data at 540nm. A difference in the derivative around
a field of 30mT is observed.

To put the measurements in perspective, an efficient way of displaying this data is a 2D plot
in which each column corresponds to a temperature, the y-axis is the applied magnetic field
and the magnitude of the signal is given by the color. These color bar diagrams are given
in figures 4.12 (a)-(e). This way, we receive a magnetic phase diagram: At points where the
magnetization deviates from the continuous behavior because of a first/second order phase
transition, there will be a corresponding deviation in the polarization rotation. This is made
visible by taking the derivatives.

The phase diagram corresponds well to figure 3.1a, slight differences in the critical fields may

4The derivatives were calculated with the TVDIiff algorithm described in [26]. It allows taking the derivative
of noisy data without previous smoothing.
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be due to a different sample shape and consequently different demagnetization factor.

54.0K
541K ]
54.2K
54.3K
54.4K
54.5K
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54.9K
55.0K
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56.0 1
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0.08

0.06
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Figure 4.11.: A closer look at the first derivative of the rotation for small magnetic fields.
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Figure 4.12.: The generation of a magnetic phase diagram from the polarization rotation data. The
similarity to figure 3.1a is apparent. The scale is qualitative, light yellow corresponds

to high values, dark blue to low ones.
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Assignment of Transitions

Assigning internal optical transitions to the measured features is challenging because the
internal electronic structure of the compound is not fully known. The selenium ions in the
compound have filled d-orbitals, which leaves us with the copper and oxygen ions as possible
participants for transitions. Figure 4.13 shows a sketch of the crystal field splitting on the two
different copper sites. Due to the additional distortions[15] of the square pyramidal/trigonal
bipyramidal oxygen ligand geometry, the d-levels will most likely be fully nondegenerate.
The oxygen p-levels will certainly mix with the copper orbitals, but the exact hybridization
mechanism and the resulting energy levels are not fully known.

Disregarding the energy levels, we can imagine three kinds of optically induced transitions in
this system: An oxygen ligand electron jumping to a predominantly copper orbital is known
as a charge transfer (CT) transition. In transition metal compounds these broad transition
bands usually start in the blue/UV region of the spectrum. The features visible in the ellip-
sometry data (figure A.5) at 4/5.5eV and possibly also the one at the upper edge of the MOKE
spectra (figures 4.5a and 4.6a) may mark the onset of the CT region.

dx“y’“ dz9
T nterdd 7"
intra-d-d
1C{o [ i e m e m oo 3d
dxy, dxz—yz
K dyz, dxz
Cu?* square pyramid o> Cu?* trigonal bipyramid

Figure 4.13.: Crystal field splittings of the two differently coordinated copper ions. Transitions from
the oxygen p-levels are also possible.

The transfer of an electron between the two different copper sites is known as an inter-d-d
transition. In DFT calculations[27], it is shown that the two different copper sites are antifer-
romagnetically coupled, thus no spin flip is needed to make the transition between the two
highest orbitals.

Transitions between the split d-levels of one ion are usually forbidden due to symmetry.
However, due to the crystal field distortions and the low-symmetry arrangement of the oxy-

gen ligands, these intra-d-d transitions may become possible. The features in the lower part
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of the measured spectra may correspond to either of these d-d transitions.

The transmission window around 2.3eV is likely the interval between two transitions. Here,
the influence of the neighboring oscillators is high enough to induce a Faraday rotation, but
the oscillator strength is sufficiently low to allow high transmission at this point. Improved
DFT calculations and the consideration of the cluster model may help shine light on these

processes.

4.6. Faraday Measurements

We continued with Faraday measurements on sample 2 which was previously polished from
both sides to get optimum transmission. The Faraday rotation values measured around
540nm are indeed large, as we previously suspected in section 4.4. This is problematic, since
we rely on the small angle approximation at a very early stage of our measurement setup (see
section 2.2). However, there are three ways in which we can get information on the rotation

behavior:

1. Beyond the range of a few degrees, the linear relation between the signal output and
the actual rotation angle is no longer valid. However, we know that the ratio i—f; as
output by the detector has a 7-periodic angle dependence (see also figure 2.5). Because
of this, we can estimate the angle between two maxima (or any two points with the

same phase) to be around 180 degrees.

2. Additionally, we can measure the slope of the signal in a small angle region, for example
in the interval [-5mT,5mT]. This will give us a value in terms of fni,% that we can use to

extrapolate.

3. We can remove the PEM from the setup and just use two crossed polarizers. This will
result in a sin?-like curve. With a fit function or by measuring the distance between
two maxima one can read off which change in magnetic field causes a rotation of 180

degrees.

The following values should be considered estimates. For an exact determination, a thinner
sample is needed to produce smaller rotations, which at the time of this thesis was not avail-
able.
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Verdet Constant

For technical applications such as optical isolators (also known as optical diodes), it is ben-

eficial to achieve large polarization rotations over a short distance. The phenomenological

constant determining this rotatory "power" is the Verdet constant with units [V] = C?rel.gT

or similar. In paramagnetic and diamagnetic materials with negligible magnetization, this
constant is given in terms of the externally applied magnetic field. However, in ferro- and
ferrimagnets, there is strong internal magnetization and the exact magnetization behavior is
not always linear or even known. For these materials, it is common[28] to define a specific
Verdet constant pp = w, which is the Faraday rotation at saturation magnetization M;

per length of the material traversed.
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(a) Determination of the slope in a small field  (b) Signal measured with crossed polarizers

interval: ﬁ—g = 0.964% (without PEM). A fit with the function
f(B) = yo + Asin® Z(B — By) yields » =
141.

Figure 4.14.: Measurement of the Faraday effect at 10K and 540nm

We used methods 2 and 3 in figure 4.14. For this particular sample, method 2 yields a value of
ﬁ—g = 0.964%, method 3 gives a slightly larger value of 1.277%. This shows that the mag-
netization behavior is not linear, as expected. To estimate the effective Verdet constant at
saturation magnetization, method 3 seems more appropriate, as it spans a larger field range
in its calculation.

If we assume the sample to be Imm thick and the saturation value to be at 165mT, we receive
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a value of:

deg

cm

pr(540nm, 10K) ~ 2100 (4.7)

For optical isolators, it is also desirable to have as little of the beam absorbed as possible.

— PF

==, where

A figure of merit for these types of devices can thus be given by the ratio 7
is the absorption constant for the material at a particular wavelength. We can do a better
estimation of the figure of merit than for the effective Verdet constant, because the sample
thickness cancels out of the equation. Based on our measurements, it is given by:
de dB de
n(540nm, 10K) = 21002 /25,4 = 82,758 (4.8)
cm cm dB
Commonly used materials in Faraday isolators are TGG (terbium gallium garnet, Tb3Gas013)

for the optical range and YIG (yttrium iron garnet, Y3Fe;0qy) for the near infrared. TGG
deg
T-cm

temperature [29]. It is outclassed by two orders of magnitude at low fields by Cu,0SeOs3,

is a paramagnet with a Verdet constant of -76.78 at a wavelength of 632nm at room
albeit at very different temperatures. In the near infrared, there are different doped YIG
compounds that show an even higher effective Verdet constant. Some exemplary values

can be found in table 4.15. The figure of merit values measured for Cu;OSeOs rank above

Wavelength Specific rotation Absorption coefficient Figure of merit
Material A (nm) pp Cem™h) a (dB ecm™h) pr/o (CdB)
Fe! 546 3.5 x 10° 3.3 x 10° 0.11
Co 546 3.6 x 10° 3.7 x 10° 0.10
Ni 400 7.2 x 10° 9.1 x 10° 0.79
MnBi 632.8 53 x10° 3.3 x 10° 0.16
YIGY 1064 280 65 43
1150 250 54 4.6
1200 240 50 4.8
1310 224 35 6.4
1550 216 23.8 9.1
YbBi: YIG® 1310 760 38 20
1550 404 15.7 25.8
Bi: YIGY 1550 —1250 2.7 463
Ce: YIG® 1310 —2510 9.8 256
1550 —1310 2.7 486

Figure 4.15.: A list of specific Verdet constants and figures of merit of several ferri-/ferromagnets.
Table from [28]. All values are at room temperature.

undoped YIG compounds, although it has to be taken into account that the values in table
4.15 are given at room temperature. For higher temperatures, the absorption coefficient of
Cu,0Se0s rises, reducing its figure of merit considerably. Also, the large rotation ceases

above T¢, which makes an application above 60K unrealistic at this point.
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5. Conclusion and Outlook

During the course of this thesis, a polarization spectrometer was constructed and charac-
terized. The setup gives good results that are in agreement with results from the literature.
The measurements performed allowed us to gain an insight into the magnetic phases of
Cu,0S8e0; in a purely optical way. Also, the goal of finding signatures of the skyrmion
phase using polarization optics was reached. At low temperatures, Cu;OSeO3; was shown to
have a fairly high Verdet constant and high transmission in an energy region around 2.3eV.

To move forward, it would be preferential to continue the measurements with thinner sam-
ples of different orientations. Then, high resolution Faraday measurements could be carried
out with the PEM in place. With the help of low-temperature ellipsometry data, one could
calculate the full dielectric tensor and learn more about the oscillators and transitions that
lead to the optical phenomena we observe.

Although an application of the material in a Faraday rotator would certainly be possible be-
cause of its high rotatory power in the optical range, its low critical temperature of around
60K probably prevents Cu;OSeOs from becoming a competitor to the wide-spread YIG and
TGG systems. A change in the magnetic properties and the position of the transmission win-
dow might be achieved with doping. Also, the investigation of thin-film Cu;OSeOs should
be an interesting endeavor as well, especially since a MOKE measurement would be ideally
suited for this type of sample.

A logical next step would be the realization of time-resolved MOKE or Faraday measure-
ments: Characteristic magnons have been identified in Cu;0SeO3 in microwave studies[30],
which should be visible as decay channels in a time-resolved measurement.

Apart from the multitude of different possibilities with Cu,OSeOs, the polarization spectrom-
eter setup can also be used to study other materials with interesting magnetization behavior.
A useful addition to the setup would be a more flexible magnet to measure other configura-
tions such as transversal and longitudinal MOKE. Also, the use of a different detector would

enable us to conduct measurements in the near-infrared spectral region.
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A. Appendix

A.1. Parabolic Mirrors and Polarization Optics

Curved mirrors such as the off-axis parabolic mirror discussed here are ideal for many op-
tical applications: Their focusing properties are based on the shape of the mirror surface,
thus they do not suffer from chromatic aberrations like lenses, which have a wavelength-

dependent focal length. An off-axis parabolic mirror is a cutout of a parabola that inherits

52.4mm
REFLECTED FOCA
MIRROR MECHANICAL AXIS
\ /OPT\CALAX\S

UV ENHANCED ALUMINUM
COATED PARABOLIC SURFACE

—MA 62.8mm f I
\ [247in] Ei‘:"r]‘
76.2mm

35.3mm
| [1.39in]
\ ¢ [3.00in]
/ \ SECTION A-A FOCAL LENGTH OF

(a) Chromatic aberration of a  (b) Geometry of an off-axis parabolic mirror, adapted from a Thor-
convex focusing lens, im- labs data sheet[32].
age from [31].

Figure A.1.: Curved mirrors do not display chromatic aberrations.

its reflected focal length from the larger parent parabola (compare to figure A.1b). Collinear
light coming from the positive z-direction is focused towards the optical axis of the parent
parabola. When reflected from a smooth surface, the angle between the incoming beam and
the surface normal is equal to the angle between the outgoing beam and the surface normal.
Also, in- and outgoing beam lie in the same plane, the plane of incidence. In vector notation,

this reads:

kout(kin,ﬁ) = kin - 2(kin : ﬁ) -1 (Al)
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Here, 11 = ﬁ is the normalized surface normal and kip oy are the in and outgoing propagation
vectors of the light. With this, one can model the behavior of a parabola cutout! and can

indeed find that collimated incoming rays are focused in a point F (figure A.2). We would

Figure A.2.: An off-axis parabolic mirror focusing collimated light.

now like to know what the polarization of the reflected light is when viewed from the sample,
i.e. the point F. To extend the model to include the polarization, we look at a collinear bundle
of incoming rays with the polarization E;,, obeying the relation E;, - ki, = 0. One has to
keep in mind that s- and p-components of the electric field are reflected differently from the
mirror surface: The direction of the s-polarization stays constant on reflection, whereas the

direction of the p-component is changed[33]. We thus decompose the polarization of each

(a) The  s-component of (b)Behavior of the p-

the polarization does component of the electric
not change direction on field on reflection.
reflection.

Figure A.3.: Difference between s- and p-reflection.

ray into a local s- and p-component, depending on the orientation of the surface normal f

To get the parabola surface as it appears for our particular mirror (compare to the datasheet in figure A.1b),
we can use the function z(x,y) = (x? + y?)/12 in the region (x — 6)% + y? < 1.
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and the propagation vector kijy:

8in = kin X kout, §out = Sin (AZ)
f)in = kin X §in, f)out = kout X §out (AS)
~~ Ep = Pin * Ein, Es = 8in - Ein (A4)

At this point, we have the polarization in terms of the local coordinates E,, and E;. If needed,
one can now include a reflectivity dependence: For metals like aluminum, there is usually a
few percent deviation between rg and r,. In this calculation, we will assume r, = rg = 1.

This can also be written in terms of a matrix multiplication[34]:

A Ay A
Ep p ;(n p in p izn Ei(n
Eg[=|8& & & |-|E. (A5)
y
0 kl)il kin klzn Eizn

To finish the analysis, we have to transform the polarization components from the local
coordinates back to an expression in terms of €y, €, and é,. For this, we multiply the vector
(Ep Es 0)T with the transposed shape of the matrix used in equation A.5, with the incoming

vectors now replaced by the outgoing ones:

X AX aX X

E out P out sout kout E P
Y — 1Ay N y

E out | = [Pout Sout kout Es (Aé)
Z Az a z

E out P out sout k out 0

In figure A.4, the calculation has been performed for light that is s-polarized with respect to
the mirror center. The deviation of the polarization rotation is color-coded. In the neutral
area in the middle, the reflected polarization corresponds to the original linear polarization.
If one goes further outward, the direction of the polarization is rotated. This makes off-axis
parabolic mirrors unsuitable for applications where the polarization of the light has to be

preserved.
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polarization rotation (degrees)

Figure A.4.: Polarization rotation induced by a parabolic mirror, as seen from the focal point F.

A.2. Bessel Function Identities

The identities

cos(dg sin(wt)) = Jo(p) + 2 Z]z,l(éo) cos(2nwt) (A.7)
n=1
sin(8y sin(wt)) = 2 Z Jons1(80) sin((2n + 1)wt) (A.8)
n=0

can be proven with the generating function of the Bessel functions. The derivation of this

generating function is not given here. It can be found, along with the full proof, in [35].

R IWACT (A.9)

n=—0oo
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W . — 7 . . — 1
We write z = e'? and i sin ;

function:

(¢ — e7¥) = 1(z — 1). Thus we can rewrite the generating

e%(z—z—l) — eixsinq’) = cos(x sin ¢) + i sin(x sin ¢) = Z ]n(x)ein¢

n=—o0o

= Z Ju(x)(cos ng + i sin ng)

n=—0oo

(A.10)

Then, splitting up real and complex parts and using the fact that Bessel functions of odd

(even) order are odd (even) functions, we get:

cos(xsin¢) =

sin(x sin ¢) =

=2) Fni(x)sin(2n+1)¢ O
n=0

(A.11)

(A.12)

Table A.1.: Some Jones vectors and matrices used in the thesis. For more elements, see e.g. [6].

polarization Jones
state vector
1

horizontal linear 0)

vertical linear

o1: 1 1
+45° linear v (1)
general linear cosa
(angle o to x axis) sina
_ L (1
right circular 7 (—1
. L (1
left circular v (1)

optical element

general linear polarizer

(angle « to x axis)

|

Jones matrix
cos® a cosa sina
sin @ cos sin® «

quarter wave plate

iz 10
0 i

phase retarder

e 0
0 ey
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A.3. Ellipsometry

Preliminary ellipsometry results in figure A.5 have been obtained by I. Vergara. The mea-
surement was done at room temperature, low temperature results were not yet available

during the writing of this thesis.

— el
— e2

Dielectric Function

0 e ] I !
1 2 3 4 5

Enerav (eV)

Figure A.5.: Preliminary ellipsometry data of Cu,OSeOs taken by I. Vergara.

A.4. Measurement Software

The measurement software for the polarization spectrometer has been implemented in LabVIEW.
Two programs were made:

The first one takes polarization spectra over a wavelength interval with a selectable step
size (see figure A.6). Once the parameters (start wavelength, end wavelength, step size,
lock-in amplification settings) are put in, the measurement is automatic: The PEM and the
monochromator wavelength settings are changed in unison, the filter wheel is rotated to the
value appropriate for the current wavelength. Magnitudes and phases of the two lock-ins are
collected at the dc/chopped frequency and the PEM first and second harmonics. Changes in
temperature are tracked, the rotation and ellipticity values are divided internally. The output
file then contains one row for each wavelength step measured.

The second program (see figure A.7) records the polarization state for a single wavelength
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Figure A.6.: Screenshot of the software used to record MOKE spectra. Once the parameters are put
in, the measurement is fully automatic.

in time and can be used to track a magnetic field sweep or the behavior over a temperature
range. Once the program is set to a certain wavelength, it continuously collects data (mag-
nitudes, phases, temperature, magnetic field) several times a second. The magnetic field or

temperature sweep can be controlled with the interface depicted in figure A.8.
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Figure A.8.: Screenshot of the control panel for the Oxford cryostat and magnet. The temperature
controller can either be controlled by hand or hold a set temperature automatically. The
magnet supports sweeps with customizable sweep rates.

55



List of Figures

1.1.

1.2.

1.3.

1.4.

1.5.

2.1.

2.2.

2.3.

2.4.

An illustration of the magneto-optical Kerr effect. Linearly polarized light
is reflected from a sample with magnetization M and its polarization state is
changed: After reflection, the polarization is elliptical with rotation angle 0
and ellipticity angle ae. . . . . . . ...
Three different MOKE geometries depending on the orientation of the in-
coming light and the magnetization direction of the sample: Longitudinal,
polar and transverse. The polar configuration is often chosen as it causes the
largest change in polarization[3]. . .. .. ... ... ... ... .. .. ...
SQUID data from a publication by Adams et al.[4]. Given on the left are the
magnetization curves of the Cu;0SeOs sample for different temperatures.
In the first derivative of the magnetization data, given on the right for two
temperatures, they find a distinct dip depending on whether the sample is in
the skyrmion phase (k) ornot (j). . . . . ... ... ... ... ... ... .
Illustration of a linearly polarized wave. E and B field vectors are perpendic-
ular and stay within the same planes parallel to the propagation vector at all
times. Image from [5]. . . . . . . ... L

Circular and elliptical polarization . . . . . .. ... ... ... ... .....

Schematic of the setup — the MOKE configuration is depicted. The angle
between incident and reflected light on the sample is exaggerated here for
more visual clarity. . . . ... Lo
A photoelastic modulator acting on a 45° LP incoming light beam. One period
depicted above takes around 20us. The retardation amplitude is set to /2. . .
Schematic of the polarizing elements in the setup. Monochromated light is
polarized in the y-direction by polarizer 1, reflected by the sample, modulated
by the PEM, passes polarizer 2 and is collected by the detector. The symbols
of the Jones matrices are attached. . . . . . .. ... ... ... ........
Three Bessel functions of the first kind. The first intersection of J; and J; is
circled, as we will use this value as a compromise for good signal-to-noise

ratios in both ellipticity and rotation. . . . . ... ... ... ... ... ...

56

18



2.5.
2.6.

2.7.

3.1.

3.2.
3.3.
3.4.

4.1.

4.2.

4.3.

4.4.

4.5.
4.6.
4.7.
4.8.
4.9.

4.10.

4.11.
4.12.

Our linear approximation works only for small angles. . . . . ... ... ..
Example calibration curves. The spectra show how much the signal changes
for a change of onedegree. . . . . . . ... ...
For an incoming beam with 45° linear polarization, a Fresnel rhomb succes-
sively introduces a 5 phase shift with two internal reflections. Unfortunately,

the outgoing beam lies in a different plane. . . . . . . ... ... ... ...

Magnetic phases and a scan obtained with small-angle neutron scattering
experiments performed on Cu;OSeO; by Adamsetal. [4] . . . ... ... ..
Crystal structure of Cu;OSeOs . . . . . . . . ... ... ... ..
Sketch of a DM geometry with one ligand. . . . . .. .. ... ........
Magnetic phases found in Cu,0SeOs . . . . . . .. ... oL

Spectra as emitted by the Xe lamp and measured by the Thorlabs PDA100A
photodetector. The available long-pass color filters are listed. Wavelength
stepsize: Snm. . . . ... L.
Dependence of the linewidth of the monochromated light on the slit width;
measured with an rgb lasersystems Qmini spectrometer. . . . . ... .. ..
Comparison of our test measurement on polycristalline Nickel and two mea-

surements from literature (performed on single crystals). Our data has been

smoothed with a Savitzky-Golay kernel with a window size of 20 data points.

Sample preparation: Laue image and close-up of the surface taken under a
MICTOSCOPE. .« o v v v v et e et e e e e e e e e e e e
Kerr rotation spectra and magnetic field sweepsat 10K . . . . ... ... ..
Kerr rotation spectra and magnetic field sweeps for different temperatures. .
Transmission properties for different temperatures. . . . . .. ... ... ..
An explanation for the nonlinear curves of section4.3 . . . . ... ... ...
Using the model described in section 4.4 (dotted lines) we try to replicate the
lineshape of the 540nmdata. . . . . ... ... ... ... ... ........
Example derivatives of the rotation data at 540nm. A difference in the deriva-
tive around a field of 30mT is observed. . . . . . . ... ... ... ... ...
A closer look at the first derivative of the rotation for small magnetic fields.

The generation of a magnetic phase diagram from the polarization rotation
data. The similarity to figure 3.1a is apparent. The scale is qualitative, light

yellow corresponds to high values, dark blue to low ones. . . . . . .. .. ..

57

23

24

25
26
27
28

29

30

32

32
34
35
36
37

39

40
41



4.13. Crystal field splittings of the two differently coordinated copper ions. Tran-

sitions from the oxygen p-levels are also possible. . . . . .. ... ... ... 43
4.14. Measurement of the Faraday effect at 10K and 540nm . . . . ... ... ... 45
4.15. Alist of specific Verdet constants and figures of merit of several ferri-/ferromagnets.

Table from [28]. All values are at room temperature. . . . . . .. ... .. .. 46
A.1. Curved mirrors do not display chromatic aberrations. . . . . . ... ... .. 48
A.2. An off-axis parabolic mirror focusing collimated light. . . . . . ... ... .. 49
A.3. Difference between s- and p-reflection. . . . . . ... ... ... ... .. 49

A.4. Polarization rotation induced by a parabolic mirror, as seen from the focal

A.5. Preliminary ellipsometry data of Cu,OSeOs taken by I. Vergara. . . . . . .. 53
A.6. Screenshot of the software used to record MOKE spectra. Once the parame-

ters are put in, the measurement is fully automatic. . .. ... ... ... .. 54
A.7. Screenshot of the software used to record magnetic field sweeps. All values

are continuously recorded until the measurement is stopped. . . . . . . . .. 55
A.8. Screenshot of the control panel for the Oxford cryostat and magnet. The tem-

perature controller can either be controlled by hand or hold a set temperature

automatically. The magnet supports sweeps with customizable sweep rates. 55

58



Bibliography

IR. Prasankumar and A Taylor, Optical techniques for solid-state materials characterization
(CRC Press, 2011).

2A Zvezdin and V Kotov, Modern magnetooptics and magnetooptical materials, Condensed
Matter Physics (Taylor & Francis, 1997).

3L. Plumer, J. van Ek, and D. Weller, The physics of ultra-high-density magnetic recording,
Results and Problems in Cell Differentiation (Springer Berlin Heidelberg, 2001).

4T. Adams, a. Chacon, M. Wagner, a. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens,
and C. Pfleiderer, “Long-wavelength helimagnetic order and skyrmion lattice phase in Cu
20Se0 37, Physical Review Letters 108, 3-8 (2012).

U. of Reading PPLATO, Light — a wave phenomenon, [Online; accessed 20-Feb-2015], http:
/Iwww.met.reading.ac.uk/pplato2/h-flap/phys6_1.html.

SF. J. Pedrotti and L. S. Pedrotti, Introduction to optics (Prentice Hall, 1993).

"Wikipedia, Circular polarization — wikipedia, the free encyclopedia, [Online; accessed 20-

February-2015], http://en.wikipedia.org/w/index.php?title=Circular_polarization.
8F. P. Mena, Kerr spectroscopy in YVOs, Master Thesis, 2000.

°P. N. Argyres, “Theory of the Faraday and Kerr effects in ferromagnetics”, Physical Review
97, 334-345 (1955).

19p H. M. van Loosdrecht, Photons and matter, University Lecture, 2014.

1 A. Fox, Optical properties of solids, Oxford master series in condensed matter physics (Ox-
ford University Press, 2001).

12p, Oppeneer, “Magneto-optical Kerr spectra”, Handbook of Magnetic Materials, 229-422
(2001).
3K, Sato, “Measurement of magneto-optical Kerr effect using piezo-birefrigent modulator”,

Jpn. J. Appl. Phys. 20, 2403-2409 (1981).
145, Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and C. Binek, “Optimiza-

tion of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix

formalism”, Review of Scientific Instruments 79 (2008).

59



J.-W. G. Bos, C. V. Colin, and T. T. M. Palstra, “Magnetoelectric coupling in the cubic ferri-
magnet Cu;0SeOs”, Phys. Rev. B 78, 094416 (2008).

165, Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of Skyrmions in a Multiferroic
Material”, Science 336, 198-201 (2012).

170. Janson, I. Rousochatzakis, A. Tsirlin, M. Belesi, A. A. Leonov, U. K. Rossler, J. V. D. Brink,
and H. Rosner, “The quantum origins of skyrmions and half-skyrmions in Cu,0SeO3”, Na-

ture Communications 5, 1-5 (2014).

187, Romhanyi, J. V. D. Brink, and I. Rousochatzakis, “Entangled tetrahedron ground state and

excitations of the magneto-electric skyrmion material Cu;OSeOs”, 4 (2014).

1YM. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, 1. V. Shvets, F. Mila, and J. P. Anser-
met, “Ferrimagnetism of the magnetoelectric compound Cu,0SeO; probed by 77Se NMR”,
Physical Review B - Condensed Matter and Materials Physics 82, 1-10 (2010).

21, Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromag-
netics”, Journal of Physics and Chemistry of Solids 4, 241-255 (1958).

21K Everschor, “Current-induced dynamics of chiral magnetic structures”, PhD thesis (2012).

22, Schiitte, “Skyrmions and Monopoles in Chiral Magnets & Correlated Heterostructures”,
PhD Thesis (2014).

23G. S. Krinchik and V. A. Artemev, “Magnetooptical properties of Ni, Co, and Fe in the ultra-
violet, visible, and infrared parts of the spectrum”, Sov. Phys. JETP 26, 1080-1085 (1968).

24P, G. van Engen, “An experimental study of the magneto-optical properties of ferromag-
netic alloys”, PhD thesis (TU Delft, 1983).

250. J. Schumann, “Structural Investigations on Layered Manganites and Ruthenates”, PhD
thesis (2010).

26R . Chartrand, “Numerical Differentiation of N oisy, Nonsmooth Data”, ISRN Applied Math-
ematics 2011, 1-11 (2011).

27].H. Yang, Z. L. Li, X. Z. Lu, M. H. Whangbo, S. H. Wei, X. G. Gong, and H. ]. Xiang, “Strong
Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu 20SeO 3”, Physical
Review Letters 109, 1-5 (2012).

28L.. Jia-Ming, Photonic Devices (Cambridge University Press, 2005).

29N. Grumman, Terbium Gallium Garnet - Datasheet.

60



39T, Schwarze, J. Waizner, M. Garst, A. Bauer, L. Stasinopoulos, H. Berger, C. Pfleiderer, and
D Grundler, “Universal helimagnon and Skyrmion excitations in metallic , semiconducting

, and insulating chiral magnets”, 14 (2013).

SWikipedia, Chromatic aberration — wikipedia, the free encyclopedia, [Online; accessed 29-
April-2015], (2015) http://en.wikipedia.org/w/index.php ?title=Chromatic_aberration&
oldid=649864116.

32Thorlabs, Off-axis parabolic mirror mpd269-f01, datasheet, [Online; accessed 29-April-2015],
(2015) http://www.thorlabs.de/thorcat/TTN/MPD269-F01- AutoCADPDEF.pdf.

33D. Suter and G. S. Uhrig, Physik III - Optik, University Lecture, 2011.

34G. Yun, S. C. McClain, and R. a. Chipman, “Three-dimensional polarization ray-tracing
calculus I, Applied optics 50, 2866-2874 (2011).

35M. Kreh, “Bessel Functions”, 1-21 (2012).

61



Abstract

During the course of this thesis, a polarization spectrometer was built. It is capable of
high-resolution measurements of magneto-optical effects, such as the magneto-optical Kerr
(MOKE) and Faraday effects. The measurement process has been mostly automated with
custom-made software. A mathematical treatment of the measurement method and its limita-
tions is given. After testing and optimization of the setup, measurements were performed on
the magneto-electric insulator Cu,OSeO3; which hosts a skyrmion phase. With the magneto-
optical measurements, it is possible to create a magnetic phase diagram of the compound,
which replicates results gathered in neutron scattering experiments with an all-optical tech-
nique. Cu;0SeOs3 is shown to have a very large Verdet constant in a small transmission

region in the optical range and possible implications of this are discussed.
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