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1. Introduction

1.1. Motivation

In the late 19th century, Michael Faraday and John Kerr discovered two e�ects that started the
�eld of magneto-optics. Faraday observed that the polarization of light transmitted through
magnetized materials is changed, Kerr found the same to be true a few years later for light
re�ected from magnetic samples. The e�ects are today termed Faraday e�ect and magneto-
optical Kerr e�ect (MOKE, pictured in �gure 1.1) after their discoverers and both are caused
by a magnetization of the sample – either through an applied external �eld or through rem-
nant magnetic order, for example in ferromagnets. To �rst order, the sizes of both Faraday

M ⊗

θ

ɑ

Figure 1.1.: An illustration of the magneto-optical Kerr e�ect. Linearly polarized light is re�ected
from a sample with magnetization M and its polarization state is changed: After re�ec-
tion, the polarization is elliptical with rotation angle θ and ellipticity angle α .

e�ect and MOKE are proportional to the magnetization of the sample[1], which is why they
can be used as an e�ective optical probe for magnetization behavior. The main advantages in
comparison to other techniques like SQUID are the possibility of quick in-situ measurements
and spatial resolution using MOKE microscopy. In a SQUID setup, the averaged magnetiza-
tion of the whole sample is determined; with a MOKE microscope one can resolve spatial
features like magnetic domains, the upper resolution bound being the Abbe di�raction limit
of the employed system. Also for very small samples or thin �lms, MOKE measurements can
give good results.
The high spatial resolution led to the introduction of magneto-optical (MO) storage media
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in the 1980s[2], with widespread commercial success in the 1990s. In one such medium, the
MiniDisc, the data is recorded magnetically and read out with a laser using magneto-optical
e�ects. While these storage solutions have today have mostly lost their relevance, MO ef-
fects continue to play an important role in science. They can give insights into the internal
structure and also, with their time-resolved analysis on the femtosecond scale, dynamics of
materials.
During the course of this thesis, a polarization spectrometer was built. It can be used to
measure MO e�ects in both re�ection and transmission geometries and features a super-
conducting magnet with a built-in cryostat. The direction of the magnetic �eld is parallel
to the incoming light, which in terms of MOKE is called the "polar" Kerr e�ect (see �gure
1.2). Cu2OSeO3 was chosen as the �rst material to be investigated. It is an insulator that is

M M M ⊗

Figure 1.2.: Three di�erent MOKE geometries depending on the orientation of the incoming light
and the magnetization direction of the sample: Longitudinal, polar and transverse. The
polar con�guration is often chosen as it causes the largest change in polarization[3].
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Figure 1.3.: SQUID data from a publication by Adams et al.[4]. Given on the left are the magnetization
curves of the Cu2OSeO3 sample for di�erent temperatures. In the �rst derivative of the
magnetization data, given on the right for two temperatures, they �nd a distinct dip
depending on whether the sample is in the skyrmion phase (k) or not (j).

the object of much current research because it hosts a skyrmion phase (for more details see
section 3.1). The reasons for doing magneto-optical spectroscopy on this compound were
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twofold: Firstly, we wanted to �nd out whether the skyrmion lattice has a special e�ect on
the polarization state of the re�ected light. Secondly, because the MOKE signal is approxi-
mately proportional to the magnetization of the material, we expected to replicate the kinks
in the magnetization behavior around the skyrmion phase as found by Adams et al. in SQUID
measurements (see �gure 1.3).

1.2. Fundamentals

Polarized Light

Figure 1.4.: Illustration of a linearly polarized wave. E and B �eld vectors are perpendicular and stay
within the same planes parallel to the propagation vector at all times. Image from [5].

Light traveling in free space is a transverse electromagnetic wave with electric and magnetic
�elds perpendicular to each other, such that E×B points in the wave’s propagation direction.
As such, it can be polarized: If the electric �eld vector oscillates in a �xed direction in space
that does not change in time, the light is linearly polarized (see �gure 1.4). If the oscillation
direction is not constant in time, the electric �eld vector traces out an ellipse and the light is
elliptically polarized. In �gure 1.5b, θ is the angle between the ellipse’s major axis (in blue)
and the x-axis. The ratio of the minor and major axes is called ellipticity, ϵ = lminor

lmajor
, often

expressed with an angle such that tanα = ϵ .
The special case ϵ = 1 leads to circular polarization. This is depicted in �gure 1.5a and further
explained in the next section.
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Jones Calculus

In 1941, R. C. Jones proposed[6] an elegant formalism for the description of fully polarized
(monochromatic) light that employs vectors to describe the polarization state and matrices
to describe polarizing elements. For a light ray propagating in the z-direction, the electric
�eld vector lies in the x-y plane. Its time-dependent oscillation can be described by:

E(t ) =



Ex (t )

Ey (t )


 =



E0xe

i (kz−ωt )

E0ye
i (kz−ωt+ϕ)




=



E0x

E0ye
iϕ


︸   ︷︷   ︸

J

ei (kz−ωt ) (1.1)

The vector J is called the Jones vector. The phase di�erenceϕ makes the polarization elliptical
as it shifts the x and y components with respect to each other (see �gure 1.5a).
The special case with E0x = E0y and a phase di�erence ϕ of ±π2 is called circularly polarized
light. The de�nition of left (LCP) and right (RCP) circular polarization is a source of lasting
confusion. There exist two di�erent viewpoints: One is describing the rotation from the
point of the receiver. In this case, the electric �eld vector of �gure 1.5a will rotate clockwise
(right-handed) in time. The other, also often used convention looks at the wave from the
point of the source. From there, the electric �eld vector will seem to rotate counterclockwise
(left-handed). In this thesis, we will look at the light beam from the position of the receiver.
This gives us the following de�nitions:

RCP : e− =
1
√
2



1
−i


 , LCP : e+ =

1
√
2



1
i


 (1.2)

Note that a combination of RCP and LCP light with equal amplitudes is again a linearly po-
larized wave.

Bases

While the Cartesian representation with basis vectors x̂ = ( 1
0
) and ŷ =

( 0
1
) may be the most

intuitive way to span the polarization vector space, any set of orthogonal vectors can also be
used.
It is often convenient to use the circular polarization states e− and e+ as a basis. For example,
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(a) Illustration of how two sine waves with a phase dif-
ference overlay to create an elliptical wave. Depicted
is the special case ∆ϕ = π

2 which results in circularly
polarized light. Image created with parts from [7].
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(b) An ellipse is the most general polar-
ization state. Parameters are the ro-
tation of its major axis and the ratio
of the two axes.

Figure 1.5.: Circular and elliptical polarization

in media with a broken time-reversal symmetry due to a magnetic �eld, the eigenmodes of
light propagation in the material are circular modes. The transformation matrices to go from
Cartesian to circular representation and its inverse are:

F =
1
√
2



1 i

1 −i


 , F−1 =

1
√
2



1 1
−i i


 (1.3)

The Cartesian basis vectors are written in a circular basis as follows:

[x̂]± = F ·



1
0


 =

1
√
2



1
1


 , [ŷ]± = F ·



0
1


 =

i
√
2



1
−1


 (1.4)

This will be useful in later chapters.

Elliptical Light

The generalization of circular to elliptical light is straightforward[8]. Using �gure 1.5b as
a reference, we start with a circularly polarized (here: e+) Jones vector and scale the x and
y components with A cosα and A sinα , respectively, to get the desired ratio between the
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major/minor axis:

E′ =
1
√
2



A cosα
iA sinα


 (1.5)

The rotation of the ellipse is then achieved by multiplying with a rotation matrixR (θ ) =
(
cosθ − sinθ
sinθ cosθ

)
:

E′′ = R (θ )E′ (1.6)

We decompose this vector into circular components using the transformation matrix from
the previous section:



E−

E+


 = F · E′′ =

A
√
2



eiθ (cosα − sinα )
e−iθ (cosα + sinα )


 (1.7)

Along the lines of [8], we de�ne a polarization variable ζ as the ratio of the two components:

ζ := E+
E−
= e−2iθ

1 + tanα
1 − tanα = e−2iθ

1 + ϵ
1 − ϵ (1.8)

This allows us to express rotation and ellipticity of the ellipse as functions of this ratio:

θ = −
1
2 arg ζ , ϵ =

|ζ | − 1
|ζ | + 1 (1.9)

Optical Elements

In Jones calculus, linear optical elements are described by 2× 2-matrices. They are applied to
the Jones vector to receive the corresponding new polarization states. In the case that there
are several optical elements, their respective matrices are multiplied with the Jones vector in
the direction that the light passes them:

E�nal = Mn ·Mn−1 · . . . ·M2 ·M1 · Einitial (1.10)
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As an example: It is intuitively clear that (ideal) polarizers Px and Py that let only light po-
larized in the x/y-direction pass through should have the following matrix representations:

Px ·



Ex (t )

Ey (t )


 !
=



Ex (t )

0




y Px =



1 0
0 0




Py ·



Ex (t )

Ey (t )


 !
=




0
Ey (t )




y Py =



0 0
0 1




Also, their product Px · Py is the zero matrix, which replicates the behavior that crossed
polarizers block light.
The expression for a polarizer at an arbitrary angle and some other optical elements can be
found in table A.1 in the appendix.

Lorentz Oscillator in a Magnetic Field

The magneto-optical Kerr e�ect has its origins in quantum e�ects such as spin-orbit coupling
and exchange interaction[9]. Nevertheless, we can provide a classical example (adapted from
[10]) that illustrates how an external magnetic �eld can cause Kerr and Faraday e�ects: We
will calculate the Lorentz oscillator model within an external magnetic �eld. In this model,
the electron (or the electron "cloud") with massm is connected to the in�nitely heavy nucleus
via a spring force. There is also a damping term, as the moving electron is expected to lose
energy by emitting radiation. An external electric �eld, like that of an electromagnetic wave,
is the driving force. The external magnetic �eld (this may also be an internal magnetization)
acts on the moving electron via the Lorentz force. The equation of motion is:

r̈ + γ ṙ + ω2
0r = −

e

m
(E + ṙ × B) (1.11)

Let the B �eld be in the z-direction, B = ( 0 0 B )ᵀ, as well as the propagation vector of the
incoming light. This implies that the E-�eld of the light oscillates in the x-y plane: E(t ) =
( Ex (t ) Ey (t ) 0 )ᵀ = e−iωt ( Ex0 Ey0 0 )ᵀ. Using the ansatz r = r0e−iωt we �nd:

(ω0 − iγω − ω
2)z0 = 0 (1.12)
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This is the equation for a damped harmonic oscillator without a driving force, i.e. in the
z-direction neither the electric nor the magnetic �eld are felt by the electron. We will thus
ignore the z coordinate from now on.
For x and y we get a set of coupled equations:




A −iωωc

iωωc A





x0

y0


 = −

e

m



Ex0

Ey0


 (1.13)

With ωc =
eB
m and A = ω0 − iγω − ω2. The matrix in question can be diagonalized by

transforming the system to a circular basis. We de�ne:

r+0 := x0 + iy0, r−0 := x0 − iy0 (1.14)

E+0 := Ex0 + iEy0, E−0 := Ex0 − iEy0 (1.15)

Along with this, we use the transformation matrices from equation 1.3 to go from Cartesian
to circular representation. Applying this to equation 1.13, we receive a solution in terms of
the new variables:

F




A −iωωc

iωωc A


 F−1



r+0
r−0


 =



A − ωωc 0

0 A + ωωc





r+0
r−0


 = −

e

m



E+0
E−0




y r+0 = −
eE+0

m(A − ωωc )
, r−0 = −

eE−0
m(A + ωωc )

(1.16)

From this, we can calculate the macroscopic polarization (for N electrons), the susceptibility
and the dielectric function:

P± = Nqr±(t ) y χ± =
P±

ε0E±
=

Ner±

E±
y ε± = 1 + Ner±

E±

ε± = −
Ne2

m(A ∓ ωωc )
(1.17)

We have found the dielectric function with di�erent elements for right and left circularly
polarized light. It can be written as a matrix εcirc =

(
ε+ 0
0 ε−

)
. This implies that there are two

refractive indices n± =
√
ε± for RCP and LCP light, respectively. Although the underlying

theory is much more complex in reality, this is an illustrative example of the dielectric tensor
properties that cause Faraday and Kerr e�ects in the material.
If we perform the transformation back to Cartesian coordinates, we �nd that in this basis
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there are antisymmetric o�-diagonal terms that we will discuss in the next sections:

εCart = F−1εcircF =




ε+ + ε− i (ε+ − ε−)

−i (ε+ − ε−) ε+ + ε−


 (1.18)

Connection between measured quantities and reflective properties

We now want to derive a relation between the measurable Kerr angle θk and ellipticity ϵk on
one hand and the dielectric tensor on the other hand.
Although we will not achieve perfect normal incidence because of limitations in our mea-
surement setup (see section 2), the expected angle between incoming and re�ected beam is
small enough to treat it as such. The Fresnel formula for re�ection at normal incidence is[11]:

ρ̃ (ω) =
ñ(ω) − 1
ñ(ω) + 1 (1.19)

Here, ñ(ω) denotes the complex refractive index which is closely related to the dielectric
function/tensor:

ñ =
√
ε̃ = n + ik (1.20)

We will drop the notation of the ω-dependence from now on.
The complex re�ection coe�cient ρ̃ describes the ratio in intensity between incident and
re�ected light, as well as a phase di�erence θ introduced in the re�ection process. As we
have established in the previous section, we expect a di�erence in re�ection for right and
left circularly polarized light:

ρ̃± = r±e
iθ± =

ñ± − 1
ñ± + 1 =

√
ε̃± − 1
√
ε̃± + 1

(1.21)

In our particular measurement geometry, the incoming light Ein is linearly polarized; the
outgoing beam Eout will in general have an elliptical polarization. Its polarization in terms
of ζ as de�ned in section 1.2 will be:

ζout =
Eout,+
Eout,−

=
Ein,+ρ̃+
Ein,−ρ̃−

=
ρ̃+
ρ̃−

(1.22)

y ζout =
r+
r−

ei (θ+−θ− ) (1.23)
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The change in polarization and ellipticity as introduced by the Kerr-active sample is then
quanti�ed as (compare to equation 1.9):

θk = −
1
2 (θ+ − θ−), ϵk =

r+
r−
− 1

r+
r−

+ 1
=
r+ − r−
r+ + r−

(1.24)

Note that both r± and θ± are frequency-dependent and that this is only valid for the polar
geometry.

The Dielectric Tensor and Origins of MOKE

Under the in�uence of external electric �elds (including light), charges in a material are
displaced and the material becomes polarized. Excluding higher order responses, there will
be a linear dependence between E and said polarization:

P = χε0E, D = ε0E + P = ε0(1 + χ )E, ε = 1 + χ (1.25)

In anisotropic media, such as solid crystals, the response of the medium is in general not
aligned with the direction of the external �eld. This means that in equation 1.25, the suscep-
tibility χ is not a scalar, but a tensor. The quantity ε = 1 + χ is called the dielectric tensor.

ε =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz



= 1 +




χxx χxy χxz

χyx χyy χyz

χzx χzy χzz




(1.26)

In the simpli�ed case of no external magnetic �eld, no absorption and no optical activity, the
susceptibility tensor can be diagonalized along a set of principal axes. We then end up with
a symmetric tensor whose o�-diagonal elements are zero.
In the simplest cases of an isotropic (cubic) and a uniaxial (trigonal/tetragonal/hexagonal)
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crystal, the dielectric tensor is simpli�ed to:

εcubic =




a 0 0
0 a 0
0 0 a



, εxx = εyy = εzz = a, n =

√
a

εuniaxial =




a 0 0
0 a 0
0 0 b



, εxx = εyy = a,εzz = b,

nO =
√
a

nE =
√
b

(1.27)

In the cubic material, there is only one refractive index, n. The existence of two refractive
indices in the uniaxial material is the source of linear birefringence, i.e. two beams with
di�erent linear polarizations get refracted di�erently.
The terms responsible for MOKE and the Faraday e�ect can be found on the o�-diagonals
of the dielectric tensor. These terms arise when time-reversal symmetry is broken in the
material[1], for example as a consequence of an external magnetic �eld as shown with the
Lorentz oscillator model. The e�ect of these elements on the Kerr and Faraday rotation will
be quanti�ed in the next section.

Dielectric Tensor and Optical E�ects

Starting with a dielectric tensor for a cubic material with o�-diagonal elements, we can cal-
culate the Kerr and Faraday angles that will be measured in the material, following the lines
of [8] and [12].

ε =




εxx εxy 0
−εxy εxx 0
0 0 εxx




(1.28)

We can diagonalize it by switching to a circular basis:

εcirc = FεF−1 =




εxx − iεxy 0 0
0 εxx + iεxy 0
0 0 εxx




(1.29)
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For incident light along the z-axis, we can calculate the re�ection with eq. 1.19:

ñ± =
√
εxx ± iεxy (1.30)

y ρ̃± =
ñ± − 1
ñ± + 1 (1.31)

Using the de�nition of the polarization variable ζ from eq. 1.22, we receive:

ζ =
ρ̃+
ρ̃−

(1.32)

= 2 ·

√
1 + i εxyεxx

−

√
1 − i εxyεxx√

εxx +
ε2xy
εxx
−

√
1 + i εxyεxx

+
√
1 − i εxyεxx

− 1√
εxx

+ 1 (1.33)

If we assume that εxy is small compared to εxx , we can use the approximation
√
1 + x ≈ 1+ x

2 :

ζ ≈
2iεxy

√
εxx (εxx − 1) − iεxy

+ 1 (1.34)

≈
2iεxy

√
εxx (εxx − 1)

+ 1 (1.35)

We make one more approximation to eq. 1.8, assuming θk and ϵk to be small:

ζ = e−2iθk
1 + ϵk
1 − ϵk

≈ (1 − 2iθk ) · (1 + 2ϵk ) (1.36)

≈ 1 − 2iθk + 2ϵk

Equating 1.36 and 1.34, we �nd:

θk + iϵk =
−εxy

√
εxx (εxx − 1)

(1.37)

This connects the Kerr angles to the dielectric tensor.
For the Faraday e�ect, a similar expression can be calculated:

θ f + iϵ f =
ωd

2c
iεxy
√
εxx

(1.38)

Here,ω is the frequency of the transmitted light and d is the traversed length of the material.
Normal incidence is assumed. The full derivation can be found in [12].
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2. Polarization Spectrometer Setup

2.1. Schematic

Sample in 
Cryo

Light 
source

PC

Chopper

Light 
source Mono

Pol.1

Lens 1

Aperture 1

Parabolic Mirror

Lens 2 Aperture 2 DetectorPEM

Pol.2

Lock-Ins

Figure 2.1.: Schematic of the setup — the MOKE con�guration is depicted. The angle between inci-
dent and re�ected light on the sample is exaggerated here for more visual clarity.

Broadband white light (∼250nm up to near IR) is created by a xenon light source, the desired
wavelength is then singled out via a computer-controlled Jobin Yvon MicroHR monochro-
mator with adjustable gratings and color �lters. The monochromator has an entrance and an
exit slit that allow for an adjustable spectral width of the monochromated light. The light is
collected and roughly collimated with an o�-axis parabolic mirror, almost fully s-polarized
by a Glan-Taylor prism and subsequently chopped with a frequency of ∼600Hz. The chopper
frequency serves as the reference for our �rst lock-in ampli�er, which will yield us the DC
intensity of the detected light.
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The light is focused with a biconvex lens (f = 15cm) and impinges on the sample in the
cryostat at almost normal (with an angle of ∼7.5◦ to the surface normal) incidence with a
spot size of around 1mm2. The re�ected light is refocused by a second f = 15cm lens and
passes a photo-elastic modulator (PEM, described in section 2.2) and a second Glan-Taylor
prism set at an angle of 135◦. The PEM modulation frequency of 50kHz (and its second har-
monic, see section 2.2) is the reference for the second lock-in ampli�er. The light is detected
by a silicon photodiode with an integrated ampli�er; the signal is subsequently passed on to
both lock-ins.
The original plans featured an o�-axis parabolic mirror as a focusing device, as it is achro-
matic and should deliver the same spot size over the whole wavelength range. For reasons
discussed in the appendix A.1, it changes the polarization of the incident light and cannot be
used in the positions of the lenses as they are given in �gure 2.1. Polarizing the light after fo-
cusing would be an option, but for the Glan-Taylor prisms to achieve good extinction ratios,
the incoming light has to be as collimated as possible. Using a di�erent kind of polarizer,
e.g. sheet polarizers would mitigate the problem, but these cannot deliver the performance
of Glan-Taylor prisms.
The measurement process has been mostly automated with the help of two custem LabVIEW
programs. Screenshots and a description of the software can be found in the appendix A.4.

2.2. Photoelastic Modulator and the Polarization Modulation
Technique

The polarization modulation technique as described by Sato[13] and others[8][12] improves
on former techniques that involve manual rotation of polarizers or Faraday rotators. The cen-
tral component of the setup is the photo-elastic modulator (PEM): It contains a piezoelectric
element that introduces vibrations in the kHz range into a bar of transparent material (fused
silica, in our case) that exhibits stress birefringence. The vibration frequency is tuned with
respect to the speed of sound and the length of the bar, such that a standing wave with a
maximum at the center is formed.
Light passing through the PEM will experience a periodic phase retardation due to stress bire-
fringence — in so far as a polarization component is parallel to the optical axis of the PEM,
typically the horizontal axis. The amplitude of retardation can be set on the PEM controller.
In the special case of a 45◦ linearly polarized incoming wave and a retardation amplitude of
λ/2, the modulated retardation will lead to a continuous variation between ±45◦ linearly and
left-/right-circularly polarized states (see �gure 2.2). In combination with two linear polariz-
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+45 RCP LCP-45 RCP +45 LCP +45-45

λ
2

λ
2-

Retardation

Polarization state

t

Figure 2.2.: A photoelastic modulator acting on a 45◦ LP incoming light beam. One period depicted
above takes around 20µs. The retardation amplitude is set to λ/2.

ers and a lock-in ampli�er, the PEM causes characteristic changes depending on polarization
ellipticity and rotation that can be picked up with a detector. The mathematical description
will be given in the next section.
Because of its high modulation frequency, the PEM/lock-in combination is rather insensitive
to noise and allows for very accurate measurements.

Calculation for Our Setup

Light 
source

Det

Pol.
1

Pol.
2

PEM

Sample
ρ

O

A

0
1( )

Figure 2.3.: Schematic of the polarizing elements in the setup. Monochromated light is polarized in
the y-direction by polarizer 1, re�ected by the sample, modulated by the PEM, passes po-
larizer 2 and is collected by the detector. The symbols of the Jones matrices are attached.

We can calculate the intensity measured at the end of the beam path by representing each
optical element in �gure 2.3 with its corresponding Jones matrix.
We start out with unpolarized monochromated light. The �rst polarizer is set to 90◦ with
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respect to the x-axis and gives us light polarized in the y-direction, ( 0
1
) , as a starting point.

As introduced in section 1.2, the sample has di�erent re�ection coe�cients for left and right
circularly polarized light. In a circular basis, its Jones matrix is given by:

ρcirc =



ρ̃+ 0
0 ρ̃−




Since we want to do the rest of the calculation in a Cartesian basis, we use the transformation
matrices F and F−1 to switch representations:

ρCartesian = F−1ρcircF =
1
√
2



1 1
−i i


 · ρcirc ·

1
√
2



1 i

1 −i




The PEM is a phase retarder as described in table A.1, with the addition that the amount of
retardation is now a periodic function in time:

O =



ei

δ
2 0
0 e−i

δ
2


 , δ (t ) = δ0 sinωt

The second polarizer (the analyzer) is set to an angle of 135◦ (or 45◦). Other con�gurations
are possible, but will yield a worse signal-to-noise ratio in most experiments[14]. Thus, our
general expression is simpli�ed:

A(135◦) =



cos2 3π
4 cos 3π

4 sin 3π
4

sin 3π
4 cos 3π

4 sin2 3π
4


 =




1
2 −

1
2

− 1
2

1
2




Combining all the elements, the full Jones matrix representation of the beam path is:

Eout = A ·O · F−1 · ρcirc · F



0
1


 (2.1)

=
1
2 ·




1
2 −

1
2

− 1
2

1
2





ei

δ
2 0
0 e−i

δ
2





1 1
−i i





ρ̃+ 0
0 ρ̃−





1 i

1 −i





0
1


 (2.2)

=
e−i

δ
2

4 ·



ieiδ (ρ̃+ − ρ̃−) − (ρ̃+ + ρ̃−)
(ρ̃+ + ρ̃−) − ieiδ (ρ̃+ − ρ̃−)


 (2.3)

=
e−i

δ
2

4 · (ieiδ (ρ̃+ − ρ̃−) − (ρ̃+ + ρ̃−)) ·


1
−1


 (2.4)
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The signal intensity arriving at the detector is the absolute squared of this value:

Iout = |Eout |2 (2.5)

=
1
8 · |ie

iδ (ρ̃+ − ρ̃−) − (ρ̃+ + ρ̃−) |2 (2.6)

We note here that ρ̃+ and ρ̃− are complex valued and of the form ρ̃± = r±e
iθ± . We also de�ne

∆θ = 1
2 (θ+ − θ−) After a lengthy calculation we receive:

I =
1
4

[
r 2+ + r 2− + (r 2+ − r

2
−) sinδ + 2r+r− cosδ sin∆θ

]
(2.7)

From equation 1.24 we take the relations θk = − 1
2 (θ+ − θ−) = −

1
2∆θ and ϵk = r+−r−

r++r− .
We estimate the di�erence in re�ectivity to be small: |r+ − r− | � r+ + r−. This allows us to
use the following approximations:

• r 2+−r
2
−

r 2++r 2−
≈ 2r+−r−r++r− = 2ϵk

• r+r−
r 2++r 2−

≈ 1
2

Additionally, we use the shorthand R = 1
2 (r

2
+ + r 2−). This gives us the following simpli�ed

equation1:

I =
1
2R [1 + 2ϵk sinδ + cosδ sin(−2θk )] (2.8)

Bessel Function Expansion

We are now able to write the signal as a function of the quantities we want to measure
(θk and ϵk ). However, until now they are superimposed. The strength of the polarization
modulation technique lies in the fact that the two quantities can be extracted from the same
signal simultaneously and with great sensitivity. We remember that the phase retardation
δ is not a constant value but is periodically modulated by the PEM: δ (t ) = δ0 sinωt . This
allows a lock-in ampli�er to separate the two.
Mathematically, we can show this by doing a Fourier decomposition on equation 2.8 that
involves Bessel functions. We use the following identities (the proof can be found in the

1For an analyzer setting of 45◦ instead of 135◦, the signs of the second and third term will be reversed.
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appendix A.2):

cos(δ0 sin(ωt )) = J0(δ0) + 2
∞∑
n=1

J2n (δ0) cos(2nωt )

= J0(δ0) + 2J2(δ0) cos(2ωt ) + O (J4(δ0)), (2.9)

sin(δ0 sin(ωt )) = 2
∞∑
n=0

J2n+1(δ0) sin((2n + 1)ωt )

= 2J1(δ0) sin(ωt ) + O (J3(δ0)) (2.10)

This allows us to expand the intensity in terms of frequency components, orders higher than

0 2 4 6 8 10 12 14

x

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

J
n
(x

)

J0(x)

J1(x)

J2(x)

x ≈ 2.63

Figure 2.4.: Three Bessel functions of the �rst kind. The �rst intersection of J1 and J2 is circled, as
we will use this value as a compromise for good signal-to-noise ratios in both ellipticity
and rotation.

2ω are ignored. The component without temporally modulated intensity will be called I (0).

I = I (0) + I (ω) + I (2ω) + higher orders,

I (0) = R
2 (1 + 2J0(δ0) sin(−2θk )), (2.11)

I (ω) = R
2 (4J1(δ0)ϵk ), (2.12)

I (2ω) = R
2 (2J2(δ0) sin(−2θk )) (2.13)

The values of I (ω) and I (2ω) depend on the retardation amplitude δ0. For values of 105.5◦

and 175◦ respectively, the Bessel functions of �rst and second order are at a local maximum,
thus maximizing our measurable signals. To get strong signals for both, we pick a retardation
amplitude of around 150.7◦ (2.63rad) which is at the �rst intersection of J1 and J2 (see �gure
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2.4).
Detectors and ampli�ers may show di�erent sensitivities to DC values and the modulated
ω and 2ω signals which are in the kHz range. In the following, we will look at the actual
measured signals (termed IDC , I f and I2f ) and introduce constants A and B to capture the
dependence on the measurement apparatus. To extract the Kerr rotation and ellipticity, we
will divide the PEM-modulated signals by the DC signal:

I f

IDC
= A ·

4J1(δ0)ϵk
1 + 2J0(δ0) sin(−2θk )

≈ 4AJ1(δ0)ϵk = const. · ϵk , (2.14)

I2f

IDC
= B ·

2J2(δ0) sin(−2θk )
1 + 2J0(δ0) sin(−2θk )

≈ −4B J2(δ0)θk = const. · θk (2.15)

We used the approximation 2J0(δ0) sin 2θk � 1 to get rid of the second term in equation 2.11
and the small angle approximation sin(−2θk ) ≈ −2θk to simplify equation 2.13. It should be
noted that this holds well for typical small rotation angles below 1◦ we expect in e.g. Nickel
but introduces a progressively larger error for bigger angles which should be kept in mind.
Within this approximation, we now �nd a linear dependence between our Kerr angles and

100 50 0 50 100
θ in degrees

3

2

1

0

1

2

3

I 2
f/
I D

C
 (a

.u
.)

exact value linear approximation

Figure 2.5.: Our linear approximation works only for small angles.

the fractions If
IDC

and I2f
IDC

. The constants that link these fractions to the actual values can be
determined by calibration.
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Calibration
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(a) Ellipticity calibration curve
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(b) Rotation calibration curve

Figure 2.6.: Example calibration curves. The spectra show how much the signal changes for a change
of one degree.

Rotation

The calibration of the Kerr rotation is straightforward. The rotation of the �rst polarizer (see
�gure 2.3) creates a rotated linear polarization that in�uences the signal in the same way that
a Kerr-active sample would. By turning this polarizer by a known and �xed amount ϕ0, we
can quantify the signal change that this rotation induces:

I2f

IDC

�����ϕ0
= −4B J2(δ0)ϕ0 (2.16)

By comparison with an angle 2ϕ0 or the negative −ϕ0 we can determine the constant:

−4B J2(δ0) =

I2f
IDC

����ϕ0 −
I2f
IDC

����−ϕ0
2ϕ0

(2.17)

Note that the detector may not have a constant response over the whole wavelength range
to be measured. This makes B = B (λ) a quantity that depends also on the wavelength of the
light (see �gure 2.6b).
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Ellipticity

Calibration of the ellipticity is simple in theory: A quarter-wave plate (see table A.1) is placed
in the beam path between the PEM and the second polarizer. It causes an additional phase
retardation of π

2 , thus modifying equation 2.8: By replacing δ with δ + π
2 , we receive cosδ for

sin(δ + π
2 ) and -sinδ for cos(δ + π

2 ):

I =
R

2 [1 + 2ϵk cosδ − sinδ sin(−2θk )] (2.18)

Carrying out the same expansions and approximations as before will now yield:

4AJ1(δ0) =

If
IDC

����ϕ0 −
If
IDC

����−ϕ0
2ϕ0

(2.19)

In practice, this calibration is more di�cult. Again, A = A(λ) depends on the wavelength of
the light, but standard quarter-wave plates are usually only speci�ed for single wavelengths
or for small spectral ranges. A Berek compensator can be used over a large wavelength range,
but has to be adjusted by hand for each particular wavelength, which for our broad spectral
range is tedious.
A solution to this particular problem is provided by a Fresnel rhomb (�gure 2.7), which is
achromatic over a large spectral range. Its major downside is that the beam exits the rhomb
slightly below and/or to the side of its original position. This means that a realignment of
the setup is necessary which should be avoided in measurement situations.

Figure 2.7.: For an incoming beam with 45◦ linear polarization, a Fresnel rhomb successively intro-
duces a π

2 phase shift with two internal re�ections. Unfortunately, the outgoing beam
lies in a di�erent plane.
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3. Overview on Cu2OSeO3

3.1. Structure

Cu2OSeO3 is a magneto-electric[15] compound that hosts a skyrmion phase[16]. It shares
the chiral and cubic B20 crystal structure with other discovered skyrmion compounds like
MnSi and FeGe, but in contrast to these is an insulator. The di�erent magnetic phases and the
presence of a skyrmion lattice in this compound have been studied by means of small-angle
neutron scattering[4]. This yields a rich phase diagram with the skyrmion phase located in
a small pocket around 60K (see �gure 3.1a). The crystal structure of Cu2OSeO3 is depicted in 3
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FIG. 2: (Colour online) Magnetic phase diagram of
Cu2OSeO3 as a function of applied magnetic field for various
orientations inferred from the magnetisation. (a) Overview
for field parallel h111i. Panels (b) through (d): Phase dia-
gram in the vicinity of Tc for various orientations. Di↵erences
as a function of field are mostly due to demagnetising e↵ects;
the brown shading indicates the regime of nearly critical spin
fluctuations.

transition fields Bc1, BA1, BA2 and Bc2 as in the binary
B20 compounds as shown in Fig. 1 (cf [29]).

Based on the magnetisation we obtain the magnetic
phase diagram shown in Fig.2. The SANS data described
below identify the following phases: (i) for B < Bc1 heli-
magnetic order denoted ’h’, (ii) for Bc1 < B < Bc2 con-
ical order denoted ’c’, (iii) for B > Bc2 field-polarized
ferrimagnetic order, and finally (iv) a skyrmion lattice
in the regime denoted ’A’, just below Tc. We note that
di↵erences of Bc2 reflect demagnetising fields, which can-
not be corrected accurately for the shape of our sam-
ple. Likewise, the field range of the skyrmion lattice
phase varies weakly with field direction (Fig.2(b), (c) and
(d)). However, the temperature range is clearly largest
for h111i and smallest for h100i, consistent with the mag-
netic anisotropy favouring the propagation of the helical
order at zero field along h100i [28, 30, 31].

Typical intensity patterns of integrated rocking scans
that identify the various phases are shown in Fig. 3. Mag-
netic rocking widths were small in all magnetic phases.
An exception was the plane perpendicular to the applied
field in the A-phase, where the precise intensity distri-
bution was also sensitive to the field and temperature
history. Future studies will have to establish whether
this was the result of demagnetising fields related to
the shape of our single crystal akin the shape depen-
dence observed in MnSi single crystals [32]. For B = 0
the intensity pattern consists of well defined spots at
k ⇠ (0.0102 ± 0.0008) Å�1 along all three h100i axes,
characteristic of a modulation with a long wavelength
�h ⇡ 616 ± 45 Å. This is shown in Figs. 3 (a) and (b),
which displays the intensity pattern for neutrons parallel
h100i and h110i, respectively. Preliminary tests with po-
larised neutrons suggest a homochiral helical modulation.
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FIG. 3: (Colour online) Typical integrated small angle neu-
tron scattering rocking scans in Cu2OSeO3. (a) Zero field
scattering pattern along h100i characteristic of helimagnetic
order along h100i. (b) Zero field scattering pattern along h110i
characteristic of a helimagnetic modulation along h100i. (c)
Typical scattering pattern for Bc1 < B < Bc2 for T ⌧ Tc. (d)
Scattering pattern in the A-phase for magnetic field perpen-
dicular to the neutron beam. Panels (e) through (h): Typical
scattering pattern in the A-phase for magnetic field parallel
to the neutron beam for various orientations.

The very weak additional spots along the h110i axes in
Fig. 3 (a) are characteristic of double scattering. By anal-
ogy with the binary B20 systems the scattering pattern
at B = 0 is characteristic of a multi-domain single-~k he-
limagnetic state, where spots along each h100i axes cor-
respond to di↵erent domain populations. In contrast, in
MnSi the helical modulation is along h111i. This is con-
sistent with a change of sign of the leading order magnetic
anisotropy in Cu2OSeO3 [20, 21, 30, 31], but contrasts
distinctly the h110i propagation direction reported for
thin samples [17].

In the range Bc1 < B < Bc2 the zero-field pattern
(Figs. 3 (a) and (b)) collapses into two spots parallel to
the field. This is illustrated for B = 60mT applied verti-
cal to the neutron beam at 5K in Fig. 3 (c). Accordingly
the modulation is parallel to B and, in analogy with the

(a) Magnetic phase diagram for Cu2OSeO3. Below Tc ,
helical, conical, skyrmion and ferrimagnetic order-
ing is found depending on the external applied �eld.
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FIG. 2: (Colour online) Magnetic phase diagram of
Cu2OSeO3 as a function of applied magnetic field for various
orientations inferred from the magnetisation. (a) Overview
for field parallel h111i. Panels (b) through (d): Phase dia-
gram in the vicinity of Tc for various orientations. Di↵erences
as a function of field are mostly due to demagnetising e↵ects;
the brown shading indicates the regime of nearly critical spin
fluctuations.

transition fields Bc1, BA1, BA2 and Bc2 as in the binary
B20 compounds as shown in Fig. 1 (cf [29]).

Based on the magnetisation we obtain the magnetic
phase diagram shown in Fig.2. The SANS data described
below identify the following phases: (i) for B < Bc1 heli-
magnetic order denoted ’h’, (ii) for Bc1 < B < Bc2 con-
ical order denoted ’c’, (iii) for B > Bc2 field-polarized
ferrimagnetic order, and finally (iv) a skyrmion lattice
in the regime denoted ’A’, just below Tc. We note that
di↵erences of Bc2 reflect demagnetising fields, which can-
not be corrected accurately for the shape of our sam-
ple. Likewise, the field range of the skyrmion lattice
phase varies weakly with field direction (Fig.2(b), (c) and
(d)). However, the temperature range is clearly largest
for h111i and smallest for h100i, consistent with the mag-
netic anisotropy favouring the propagation of the helical
order at zero field along h100i [28, 30, 31].

Typical intensity patterns of integrated rocking scans
that identify the various phases are shown in Fig. 3. Mag-
netic rocking widths were small in all magnetic phases.
An exception was the plane perpendicular to the applied
field in the A-phase, where the precise intensity distri-
bution was also sensitive to the field and temperature
history. Future studies will have to establish whether
this was the result of demagnetising fields related to
the shape of our single crystal akin the shape depen-
dence observed in MnSi single crystals [32]. For B = 0
the intensity pattern consists of well defined spots at
k ⇠ (0.0102 ± 0.0008) Å�1 along all three h100i axes,
characteristic of a modulation with a long wavelength
�h ⇡ 616 ± 45 Å. This is shown in Figs. 3 (a) and (b),
which displays the intensity pattern for neutrons parallel
h100i and h110i, respectively. Preliminary tests with po-
larised neutrons suggest a homochiral helical modulation.
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FIG. 3: (Colour online) Typical integrated small angle neu-
tron scattering rocking scans in Cu2OSeO3. (a) Zero field
scattering pattern along h100i characteristic of helimagnetic
order along h100i. (b) Zero field scattering pattern along h110i
characteristic of a helimagnetic modulation along h100i. (c)
Typical scattering pattern for Bc1 < B < Bc2 for T ⌧ Tc. (d)
Scattering pattern in the A-phase for magnetic field perpen-
dicular to the neutron beam. Panels (e) through (h): Typical
scattering pattern in the A-phase for magnetic field parallel
to the neutron beam for various orientations.

The very weak additional spots along the h110i axes in
Fig. 3 (a) are characteristic of double scattering. By anal-
ogy with the binary B20 systems the scattering pattern
at B = 0 is characteristic of a multi-domain single-~k he-
limagnetic state, where spots along each h100i axes cor-
respond to di↵erent domain populations. In contrast, in
MnSi the helical modulation is along h111i. This is con-
sistent with a change of sign of the leading order magnetic
anisotropy in Cu2OSeO3 [20, 21, 30, 31], but contrasts
distinctly the h110i propagation direction reported for
thin samples [17].

In the range Bc1 < B < Bc2 the zero-field pattern
(Figs. 3 (a) and (b)) collapses into two spots parallel to
the field. This is illustrated for B = 60mT applied verti-
cal to the neutron beam at 5K in Fig. 3 (c). Accordingly
the modulation is parallel to B and, in analogy with the

(b) SANS image of the six-fold sym-
metry encountered in the skyrmion
lattice phase, the magnetic �eld is
aligned parallel to the neutron beam.

Figure 3.1.: Magnetic phases and a scan obtained with small-angle neutron scattering experiments
performed on Cu2OSeO3 by Adams et al. [4]

�gure 3.2a. There are two di�erent kinds of copper sites in the unit cell, marked green and
blue depending on the con�guration of their oxygen ligands. The number of oxygen ions
around the copper sites is the same in both cases, forming either a distorted square pyramid
or a distorted trigonal bipyramid. This leads to di�erent surroundings and a di�erent crystal
�eld splitting for the copper ions[15].
The copper ions are mainly responsible for the magnetic properties of Cu2OSeO3. Neglecting
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the other constituents, there are four copper tetrahedra in the unit cell, see �gure 3.2b. DFT
calculations show that the interactions within these tetrahedra are strong and that neigh-
boring tetrahedra are comparatively weakly coupled. This has led to a multi-scale approach
to explain magnetic properties[17]: The tetrahedra are in a robust (excitation gap of ∼275K)
3-up-1-down ground state and have an e�ective total spin of 1 (see �gure 3.2b). The point
is made that these rigid spin-1 clusters can be considered the building blocks of the mag-
netic structure and that the individual spins themselves are not of great importance at lower
temperatures.

(a) Unit cell of Cu2OSeO3, adapted from [16].
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FIG. 1. (color online) (a) Distorted pyrochlore structure of
Cu2OSeO3. Solid (dashed) lines indicate the strong (weak)
exchange couplings. For clarity, the longer-range JAF

O..O cou-
pling (see text) is not shown here. (b) The energy spectrum
of an isolated strong tetrahedron [23].

blocks of Cu2OSeO3 are not individual Cu spins, but en-
tangled Cu4 tetrahedra.
Magnetic ground state— Cu2OSeO3 has the non-

centrosymmetric P213 space group, similar to the metal-
lic B20 helimagnets. There are two symmetry inequiv-
alent Cu2+ sites, Cu1 and Cu2, residing at the Wyckoff
positions 4a and 12b, respectively [12, 21, 24]. These sites
form a distorted, 3D pyrochlore lattice of corner shar-
ing tetrahedra, consisting of one Cu1 and three Cu2 ions
each, see Fig. 1(a). For present purposes, we consider
only the Heisenberg-type exchange interactions described
by the Hamiltonian HHeis =

∑
〈ij〉 JijSi · Sj (where Jij

are the exchange couplings between sites i and j). The
weaker Dzyaloshinskii-Moriya interactions [18, 19] affect
only the very low frequency portion of the excitation
spectrum close to the Γ point, as shown by the agree-
ment to experiment below and by the very low value of
the twisting parameter of the effective action [19]. Four
of the five most relevant exchange paths are indicated in
Fig. 1: JAF

s = 145K, JFM
s = −140K (within strong tetra-

hedra, solid lines) and JAF
w =27K and JFM

w =−50K (con-
necting strong tetrahedra, dashed lines). The fifth cou-
pling is a longer-range exchange, JAF

O..O=45K, connecting
Cu1 with Cu2 sites across the diagonals of alternating
Cu1–Cu2 hexagon loops. The weak coupling values are
the ones obtained in [19] based on ab initio calculations
and subsequent comparison to experimental magnetiza-
tion data, while the values of JAF

s and JFM
s are the ones

extracted from the recent terahertz ESR data [20] using
the present theoretical framework, and are different from
the ones given in [19] by only 10-15%.

The presence of stronger (JAF
s and JFM

s ) and weaker
couplings (JAF

w , JFM
w , and JAF

O..O) suggests that we take as
a starting point a tetrahedron–factorized wave function
|Ψ〉 =

∏⊗
t |ψ〉t, where |ψ〉t is a QM state living in the

16-dimensional Hilbert space of the strong tetrahedron t.
Doing so is equivalent to solving the single tetrahedron

mean field (TMF) Hamiltonian [19] H(t)
TMF =H(t)

0 +V(t)
MF,

where H(t)
0 contains the intra-tetrahedra couplings, and

V(t)
MF the exchange fields exerted from t′ �= t at a mean

field level. The ensuing energy eigenstates of H(t)
0 are

shown in Fig. 1(b) above, and can be labeled by the to-
tal spin S, its projection Sz, and the irreducible repre-
sentations λ of the point group C3v. The ground state is
an A1–triplet with a large excitation gap of ∼ 282.5 K.
A finite VMF mixes states with different S, so that it
is no longer a good quantum number. The point group
symmetry remains C3v, however, thus the A1–triplet can
only admix with the A1–quintet. So for an infinitesimal
symmetry breaking magnetic field along z, the ground

state of H(t)
TMF reads

|ψ〉t =cos
α

2
|1, 1, A1〉t + sin

α

2
|2, 1, A1〉t , (1)

where the variational parameter α controls the degree of
spin mixing and the local moments, since

〈Sz
1 〉=−1

4
(cosα +

√
3 sin α), 〈Sz

2 〉= 1

3
(1 − 〈Sz

1 〉) . (2)

Incidentally, the total moment per tetrahedron is 〈Sz
1 〉+

3〈Sz
2 〉 = 1 regardless of α, which corresponds to a 1/2

magnetization plateau. For α = 0, 〈Sz
1 〉 = − 1

4 and
〈Sz

2 〉 = 5
12 , while in the coupled limit the minimization

of t〈ψ|H(t)
TMF|ψ〉t yields α = 0.337205, 〈Sz

1 〉 � −0.38 and
〈Sz

2 〉�0.46. The reduced values of the spin lengths com-
pared to the classical Sz

1,2 =∓ 1
2 values reflect the fact that

|ψ〉 is highly entangled and cannot be decomposed into a
site-factorized form. Such a local moment reduction has
indeed been observed experimentally [12].

Magnetic fluctuations and excitations— Owing to the
QM nature of |Ψ〉, including the fluctuating part H−∑

t H(t)
TMF requires a multi-boson generalization [25–28]

of the standard spin-wave expansion [29–31]. Such
multi-boson theories have previously been employed suc-
cessfully in quantum spin models with dimerized [32],
quadrupolar [33, 34], or nematic phases [35, 36].

We first introduce bosonic operators an,ν(R), with n=
1-16 and ν = 1-4, such that a†

n,ν(R)|0〉, where |0〉 is the
vacuum, gives the n-th eigenstate of HTMF [see Fig. 2(b)]
at the ν-th tetrahedron inside the unit cell R. The
wavefunction |Ψ〉 can be thought of as a coherent state∏

ν,R(a†
1,ν(R))M |0〉 as M →∞. The remaining 15 bosons

per tetrahedron play the role of generalized “tetrahedral
spin waves”. Now, given that each tetrahedron can only
be in one of the 16 states |n〉, the bosons must satisfy the
hard-core constraint

∑
n a†

n,ν(R)an,ν(R) = 1. Following
the standard approach [29], to treat this constraint we
allow for M bosons per tetrahedron instead of 1, and
replace the condensed bosons with

a1,ν =a†
1,ν =

√
M −

∑

n>1

a†
n,νan,ν , (3)

(b) Simpli�ed picture of the Cu2OSeO3 unit
cell. The relevant copper sites form tetra-
hedra. Figure from [18]

Figure 3.2.: Crystal structure of Cu2OSeO3

3.2. Magnetism in Cu2OSeO3

The interesting magnetic structures in Cu2OSeO3 and other B20 compounds are caused by
the combination of di�erent e�ects with di�erent energy scales. Ferromagnetic coupling of
spins (or, in this particular case, clusters) is the strongest ordering mechanism: It can be
described by a Heisenberg Hamiltonian of the form:

HH = −
1
2
∑
i,j
i,j

Jijsi · sj (3.1)

For positive Jij the system will prefer a parallel alignment of spins.
The crystal structure of Cu2OSeO3 belongs to the low-symmetry cubic P213 space group[19].
It contains a threefold rotation around 〈111〉 and a screw axis along 〈100〉, but lacks many
common cubic symmetry operations. Most notably absent is inversion symmetry. This
causes the crystal to be inherently chiral and is a condition for the occurrence of the Dzyaloshinskii-
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Moriya (DM) interaction. Its basic Hamiltonian has the form:

HDM = −
1
2
∑
i,j
i,j

Dij · (si × sj ) (3.2)

Dzyaloshinskii predicted[20] in 1958 that in low-symmetry systems an antisymmetric ex-
change interaction of the form 3.2 can exist. Moriya worked out the microscopic theory
two years later and found spin-orbit coupling to be a possible mechanism. In the simplest

Si Sj

ri rj

Dij

Figure 3.3.: Sketch of a DM geometry with one ligand.

case, the DM exchange interaction between two ions is mediated by a single third ligand
(�gure 3.3). The orientation of Dij is perpendicular to the triangle spanned by the three ions:
Dij ∝ ri × rj . If they are perfectly aligned, the cross product, and with it the DM interaction,
is zero. The magnitude of the DM vector depends on the strength of the spin-orbit coupling
in the material and is in general considerably smaller than Jij .
The combination of Heisenberg and DM exchange interaction leads to the formation of
twisted magnetic structures with a long period compared to the unit cell: The Heisenberg
term wants to align the spins uniformly, the DM energy is minimized for Si ⊥ Sj . The period
of the magnetic helices is thus determined by the ratio D

J . [21]

Helical Phase, Conical Phase, Skyrmions

In zero or small applied magnetic �eld B < Bc1 and below the critical temperature of around
∼60K, Cu2OSeO3 is in a helically ordered magnetic state. Spins twist around a vector q as
shown in �gure 3.4a. The modulation period of the helices is 616 ± 45 Å, considerably larger
than the unit cell. In contrast to MnSi, where the helical modulation is along 〈111〉, the he-
lices are observed in the 〈100〉 directions at zero �eld[4]. Multiple domains of 〈100〉 helices
with di�erent directions coexist in this phase.
For slightly stronger �elds Bc1 < B < Bc2, the multi-domain structure aligns to the magnetic
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�eld; the helices are now modulated along B. Additionally, the spins are no longer perpen-
dicular to their common q-vector and start to align with the magnetic �eld. This results in
a nonzero net magnetization along B (see �gure 3.4b). The angle of the cone decreases with
increasing magnetic �eld until a ferrimagnetically ordered state is reached at Bc2. For a small

q

(a) Helical phase: The
spins are perpendicu-
lar to the propagation
vector q and twist
around it.

q
B

(b) Conical phase: The
spins are no longer
perpendicular to the
propagation vector
but are slightly tilted
towards B.

(c) Skyrmion phase:
Ground state for a
particular �eld and
temperature region.
Image from [22].

Figure 3.4.: Magnetic phases found in Cu2OSeO3

region of applied �eld and temperature around 30mT and 60K (see �gure 3.1a), the skyrmion
phase is the ground state of the system. These magnetic "knots" have gained considerable sci-
enti�c attention, as they possess unique topological properties and are promising candidates
for novel magnetic storage devices.
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4. Measurements

4.1. Characterization of the Setup

Spectral Range and Wavelength Resolution

The light source used in the setup is a xenon arc lamp. The lamp glass is designed to cut
o� wavelengths below 300nm to reduce the amount of ozone produced in a lab setting. The
detector speci�cations allow for a measurable range of around 350 to 1000nm. To remove
higher-order re�ections from the monochromated light, several long-pass color �lters can be
used. Lamp spectra taken with di�erent �lters in place can be found in �gure 4.1. Automatic
�lter switching has been built into the measurement programs.

200 300 400 500 600 700 800 900 1000
Wavelength (nm)

Int
en

sit
y 

(a
.u

.)

no filter
320nm LP
550nm LP
630nm LP
830nm LP

Figure 4.1.: Spectra as emitted by the Xe lamp and measured by the Thorlabs PDA100A photodetec-
tor. The available long-pass color �lters are listed. Wavelength step size: 5nm.

With the two slits of the monochromator, one can change the linewidth of the monochro-
mated light. Narrower slits lead to a smaller FWHM. An exemplary measurement has been
done at a wavelength of 548nm: As can be seen in �gure 4.2, there is a trade-o� between light
intensity and linewidth. The achievable range of FWHM at 548nm lies between ∼20nm (for
a slit width of 2mm) and ∼3nm (for a slit width of 0.25mm). This limits our achievable wave-
length resolution and should be changed in unison with the step size in the measurement
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software for best results.
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Figure 4.2.: Dependence of the linewidth of the monochromated light on the slit width; measured
with an rgb lasersystems Qmini spectrometer.

Noise and resolution

The achievable resolution of our setup is limited by the the amount of noise in the measured
quantities. In the Kerr geometry, the measured angles are usually small, so a good resolution
is needed. To test the noise �oor of the setup, we set the �rst polarizer to a particular rotation
value and record the rotation signal in time, as re�ected from a representative sample. Ideally,
the �uctuations in the measured value should be as small as possible. The standard deviations
σθ of the measured values were taken. Some exemplary values can be found in the table
below. The settings of the entrance an exit slits give us an FWHM of around 15nm for the
wavelength.

Wavelength (nm) 400 540 800
Standard deviation σθ (deg) 6.15 ·10−3 3.58 ·10−3 13.01 ·10−3

These values will depend on di�erent factors:

Reflectivity: The values above were measured on aCu2OSeO3 sample that shows only≈ 2%
re�ected intensity in comparison to an aluminum mirror. For a more re�ective surface,
the signal-to-noise ratio will be substantially better.

Integration time: Prolonging the integration time set on the lock-in ampli�ers will reduce
the noise level, with the cost of a longer measurement.
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Stability: Vibrations in both sample and optics can increase the noise level. For example:
In the measurements above, the vacuum pump of the cryostat was still running. If
maximum sensitivity is crucial, all pumps can be turned o�.

Lamp intensity: The intensity output of our light source is strongly wavelength-dependent
(see �gure 4.1). This will worsen the noise level in some regions of low intensity.

Test Measurement on Nickel

To test the measurement setup, we measured the Kerr rotation of Nickel, which displays a
comparatively small Kerr rotation, using a polished polycristalline Nickel plate of around
5mm×5mm size. The measurement procedure is as follows:

• The Nickel plate is brought into magnetic saturation in an applied �eld B parallel to
the incoming light

• The monochromator and PEM traverse the wavelength range with a prede�ned step
size; IDC , I f and I2f are recorded for every step

• The measurement is repeated for an applied �eld of -B

The Kerr rotation of Nickel is relatively small. Additionally, the beam path contains poten-
tially birefringent elements like lenses that may cause a slight change in the measured values.
We use that fact that the Kerr e�ect changes sign when the magnetic �eld is �ipped and use
the measurements at +B and -B to isolate the antisymmetric component:(

I2f

IDC

)
antisym.

=
1
2

(
I2f

IDC

�����+B −
I2f

IDC

�����−B
)

(4.1)

This calculation also eliminates potential small misalignments of the polarizers and gives us
a proper value for zero rotation. After this, the calibration terms as de�ned in section 2.2 are
applied to the measurement values.
This results in a Kerr rotation as depicted in �gure 4.3. Compared to values obtained by
Krinchik[23] and van Engen[24], our values seem to be in good agreement. Little deviations
are expected, because Krinchik and van Engen did measurements on single crystals.

4.2. Sample Preparation

The Cu2OSeO3 samples used were grown in Groningen by Aisha Aqueel and have diameters
between 1 and 3 millimeters. The sample orientation and single-crystallinity was determined
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Figure 4.3.: Comparison of our test measurement on polycristalline Nickel and two measurements
from literature (performed on single crystals). Our data has been smoothed with a
Savitzky-Golay kernel with a window size of 20 data points.

in the institute’s Laue machine. With the help of the CLIP software by O. Schumann[25], the
scanned Laue patterns can be �tted if the space group and lattice parameters of the mate-
rial are known (see �gure 4.4a). For now, our setup only supports the polar con�guration

(a) Laue image created in the
orientation process.

(b) [111] surface of sample
2 after lapping and pol-
ishing.

Figure 4.4.: Sample preparation: Laue image and close-up of the surface taken under a microscope.

(compare to �gure 1.1), this means that we have to pick a crystal direction to which both
the applied magnetic �eld and the incoming light beam are parallel. The [111] direction was
chosen for two reasons: The skyrmion phase pocket seems to have the largest spread in this
magnetization direction (see �gure 3.1a). Because it is fairly small in both temperature and
applied magnetic �eld, we wanted to maximize our chances of hitting it on purpose. Also,
the magneto-electric e�ect induces an electric polarization P ‖ H in this direction – for an
applied �eld in the [100] direction no polarization appears. This may have interesting e�ects
in the polarization behavior.
The samples were lapped and polished to achieve high re�ectivity and little scattering (see
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�gure 4.4b). In the end, we had surface areas of around 1mm2 for sample 1 and 3mm2 for
sample 2 to work with, which is big enough for our spectrometer spot size.
The samples were mounted on a copper plate next to a piece of aluminum mirror which
functions as a reference material inside the cryostat.

Sample 1 Sample 2
Orientation [111] [111]
Approximate diameter 1.5mm 3mm
Approximate thickness 0.4mm 1mm

4.3. Kerr Measurements

We began with measurements on sample 1. In the polarization rotation spectra at a tem-
perature of 10K (see �gure 4.5a), we �nd features around 1.55eV and 3.5eV that show a rel-
atively big rotation but seem to be roughly proportional to the applied �eld, as is expected
for the Kerr e�ect. However, we also �nd an exceptionally large rotation centered around
540nm/2.3eV that does not seem to behave linearly.
The smaller �gures below show the dependence of the Kerr rotation on the applied �eld at
two di�erent energies. On the left, the B-dependence at 800nm seems to be roughly linear up
to the saturation �eld. The two small bumps at ±40mT seem to correspond to the point Bc1 in
magnetization behavior where the di�erent q-domains in the material become aligned and
the sample enters the conical phase. The sudden change around ±170mT corresponds to the
�eld Bc2 where the spins in the material become ferrimagnetically aligned and a saturation
is reached.
The lineshape1 in �gure 4.5c is very puzzling. It shares the ferrimagnetic saturation point
with the 800nm measurement, but has two sinusoidal oscillation periods with a very large
amplitude in between. It turns out that this is a combination of two e�ects – an explanation
will be given in section 4.4.
In a temperature-dependent measurement (�gure 4.6), we �nd that the features lose in inten-
sity when going to the critical temperature and beyond. We estimateTc to be around 56K for
our sample2. The amplitude of the oscillations at 540nm decreases slightly with temperature,
the period length seems to stay approximately constant. The ferrimagnetic saturation �eld

1In contrast to the spectrum above, this measurement starts at θk = 0 for B = 0. This was a deliberate choice,
as for this magnitude of polarization rotation, the small angle approximation we used in section 2.2 starts
to become problematic. We thus wanted to spread the rotation above and below zero as equal as possible.

2This can be seen very nicely in the magnetic phase diagrams in the later section 4.5.

33



1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
Energy (eV)

8

6

4

2

0

2

4

6

8

Po
lar

iza
tio

n 
ro

ta
tio

n 
(d

eg
re

es
)

-300mT
-200mT
-120mT
-80mT
-20mT
0mT
+20mT
+80mT
+120mT
+200mT
+300mT

(a) Kerr rotation spectra at 10K for di�erent magnetic �eld strengths. Detailed behavior at the dotted
lines is shown in �gures (b) and (c).
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Figure 4.5.: Kerr rotation spectra and magnetic �eld sweeps at 10K

34



Bc2 decreases with temperature, which leads to the lineshape slowly being "eaten up" from
the sides.
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(a) Temperature dependence of the Kerr rotation spectra for B=300mT
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(b) The behavior at 1.55eV/800nm for di�er-
ent temperatures.
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Figure 4.6.: Kerr rotation spectra and magnetic �eld sweeps for di�erent temperatures.
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Transmission

The needed clue to explain the strange lineshape around 540nm came with the measurement
of the thicker second sample. There, the large irregular peak seems to be missing. A closer
investigation reveals that the peak is not completely gone but just much weaker in amplitude.
Also, now there are more oscillations in the region between −Bc2 and Bc2 (see �gure 4.8a). An
explanation is that the light can transmit through the sample at this particular wavelength
and is Faraday-rotated. This had previously not been taken into account, because the crystal
seemed fully opaque at room temperature. As measurement 4.7a shows, there is indeed a
narrow transmission window progressively opening for lower temperatures.
The progression of the absorption coe�cient α from Itransm.

I0−Ire�.
= e−α ·l at a wavelength of 540nm

is given in �gure 4.7b. This should be considered an estimate: The exact measurement of the
sample thickness was not possible during the end phase of this thesis and is assumed to be
1mm±20%. The re�ectance is set to 2% based on some earlier comparisons with an aluminum
mirror, but will of course depend on the surface quality.
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Figure 4.7.: Transmission properties for di�erent temperatures.

To �nd out more about the optical properties of Cu2OSeO3, a preliminary ellipsometry mea-
surement was carried out by I. Vergara and can be found in the appendix A.3. Unfortunately,
no low temperature ellipsometry data was available during the writing of this thesis. This
also prohibits us from calculating the full dielectric tensor.
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4.4. Modelling the Results

Inspired by the transmission measurement and the Kerr data of sample 2, one can �nd a
phenomenological model for the rotation curves of section 4.3. Because the material becomes
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(a) For a di�erent, thicker
sample the �eld sweep
around 540nm revealed
more oscillations. This
was a clue that transmis-
sion and Faraday rotation
are happening.

d

Kerr rotation

Faraday rotation

β

(b) The outgoing beam
consists of a re�ected,
Kerr rotated part and
a partially transmitted
and back-re�ected part
that experiences Faraday
rotation.

EKerr

Emeasured EFaraday

(c) The �eld vectors of re-
�ected and partly transmit-
ted light add up to the mea-
sured end result.

Figure 4.8.: An explanation for the nonlinear curves of section 4.3

transparent at around 2.3eV for lower temperatures, part of the incoming light can now
traverse the material and gets re�ected from the backside of the crystal (see �gure 4.8b).
While the part of the ray that is re�ected on the front experiences a normal (presumably
small) Kerr rotation, the part re�ected from the back experiences a Faraday rotation over a
length of 2d/ cos β , where d is the thickness of the crystal and β is the angle of the incident
light relative to the surface normal. The Faraday rotation is �eld-dependent and can be
described via the linear relation

θ f = M (H ) ·V · l

= M (H ) ·V ·
2d

cos β (4.2)

Here, V is the Verdet constant with units [ radT ·m ], describing the amount of polarization rotation
per length per �eld. As further measurements will show, the Verdet constant is extraordinar-
ily large in Cu2OSeO3. Viewed from the point of the detector, we see a combination of two
electric �eld vectors: The Kerr-rotated, front-re�ected one that shows only a minimal �eld
dependence and the Faraday-rotated, back-re�ected one that strongly rotates depending on
the applied �eld. The measurement apparatus picks up the sum of the two and this leads to
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the periodic B-dependence we see in the magnetic �eld sweeps (see �gure 4.8c). Note that
this also explains the di�erent result for the thicker sample: Here, the path through the crys-
tal is longer, thus the Faraday rotation is stronger but the back-re�ected intensity is weaker.
Thus we see more oscillations and an overall weaker oscillation amplitude.
In summary, we assume the following for our model:

1. We impinge on the sample with fully s-polarized light.

2. For the sake of simplicity we consider only one back-re�ection.

3. Absorption in the material follows a Lambert-Beer law: I ∼ e−α ·l

4. Both Kerr and Faraday e�ects are linear in magnetization: θ f = 2M (H )Vd
cos β , θk = CkM (H )

One can choose either a complex number or a vector representation for the description of
the model. The former one is shorter to write out but here we chose the latter, as it is more
consistent with the Jones calculus used in the rest of the thesis.
For the Kerr-rotated part, the relationship is:

Ek = r · R[θk (M (H ))] ·


0
1


 (4.3)

Here, R is a rotation matrix and r is the re�ection coe�cient3. For the Faraday-rotated part,
we get:

Ef = r (1 − r )2 · e−
α ·2d
cos β · R[θ f (M (H ))] ·



0
1


 (4.4)

The measured Jones vector then is the sum of the two: Etot = Ek + Ef . To receive the change
of the total polarization angle, we calculate the angle of the sum vector to the x-axis and
subtract the 90 degrees we started out with:

∆θ = ^(Etot, x̂) −
π

2 = arccos
(
Etot · x̂
|Etot |

)
−
π

2 (4.5)

The magnetization M (H ) of the sample rises approximately linearly up to the ferrimagnetic
saturation point, from where on it stays almost constant. As a starting point, this could be

3If we want to be precise, we have to distinguish between s- and p-re�ectivity, especially for the back-re�ected
light from inside the sample. For the sake of this model, this is close enough.
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(a) Piecewise function as an approxima-
tion for the magnetization
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(b) 800nm Kerr data for magnetization,
Savitzky-Golay smoothed, window
size 180 data points / 75mT
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(c) Model resulting from the piecewise
function above
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(d) Model resulting from the 800nm data

Figure 4.9.: Using the model described in section 4.4 (dotted lines) we try to replicate the lineshape
of the 540nm data.

approximated with a piecewise function (see also �gure 4.9a):

M (H ) =


−C̃ · Hsat, H < −Hsat

C̃ · H , −Hsat < H < Hsat

C̃ · Hsat, H > Hsat

(4.6)

This, in combination with the model above, yields a fairly accurate representation of the
lineshape (�gure 4.9c). If we assume that the amount of Kerr rotation around 1.5eV/800nm is
proportional to the actual magnetization of the sample, we can try to improve our �tting with
this information. Using the data in �gure 4.9b as the magnetization lineshape, we receive the
�t of �gure 4.9d. In conclusion, we feel con�dent that transmission and back-re�ection is
indeed what is causing the peculiar lineshape measured around 540nm.
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4.5. Magnetic Phase Diagram

Although the polarization rotation data we collected around 540nm is a combination of two
e�ects, we can still extract useful information from it. Similar to the work of T. Adams et al.[4]
who found a skyrmion kink (see �gure 1.3) in the derivatives of their SQUID magnetization
data, we do the same in our Kerr/Faraday curves. For this, we take the �rst and second
derivatives4 of the polarization rotation at 540nm for all the measured temperatures. An
example is given in �gure 4.10: The derivative of the rotation at 54.7K shows features around
±25mT that are not present in the 51K data (marked with a dotted red line).
If we plot this region of interest for the temperature range of 54K to 56K, we see a feature
fading in at around 30mT/54K and fading out again at 10mT/56K (�gure 4.11). Subtle changes
are also observed around 35mT. This corresponds to the boundaries of the skyrmion region
as seen by Adams et al.
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Figure 4.10.: Example derivatives of the rotation data at 540nm. A di�erence in the derivative around
a �eld of 30mT is observed.

To put the measurements in perspective, an e�cient way of displaying this data is a 2D plot
in which each column corresponds to a temperature, the y-axis is the applied magnetic �eld
and the magnitude of the signal is given by the color. These color bar diagrams are given
in �gures 4.12 (a)-(e). This way, we receive a magnetic phase diagram: At points where the
magnetization deviates from the continuous behavior because of a �rst/second order phase
transition, there will be a corresponding deviation in the polarization rotation. This is made
visible by taking the derivatives.
The phase diagram corresponds well to �gure 3.1a, slight di�erences in the critical �elds may

4The derivatives were calculated with the TVDi� algorithm described in [26]. It allows taking the derivative
of noisy data without previous smoothing.
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be due to a di�erent sample shape and consequently di�erent demagnetization factor.
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Figure 4.11.: A closer look at the �rst derivative of the rotation for small magnetic �elds.
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(a) The curves of �gure 4.6c
mapped qualitatively with
colors. Each column cor-
responds to one measure-
ment.

(b) First derivative of the data,
a structure gets visible.

(c) Second derivative of the
data, kinks in the original
structure are now visible as
peaks. This leads to a mag-
netic phase diagram.

(d) Second derivative. Detailed view
over a narrower temperature range.
There seems to be an irregularity
around 55K.

(e) Second derivative. Detailed view of
the temperature region around 55K.
The marked region corresponds to
the skyrmion phase.

Figure 4.12.: The generation of a magnetic phase diagram from the polarization rotation data. The
similarity to �gure 3.1a is apparent. The scale is qualitative, light yellow corresponds
to high values, dark blue to low ones.
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Assignment of Transitions

Assigning internal optical transitions to the measured features is challenging because the
internal electronic structure of the compound is not fully known. The selenium ions in the
compound have �lled d-orbitals, which leaves us with the copper and oxygen ions as possible
participants for transitions. Figure 4.13 shows a sketch of the crystal �eld splitting on the two
di�erent copper sites. Due to the additional distortions[15] of the square pyramidal/trigonal
bipyramidal oxygen ligand geometry, the d-levels will most likely be fully nondegenerate.
The oxygen p-levels will certainly mix with the copper orbitals, but the exact hybridization
mechanism and the resulting energy levels are not fully known.
Disregarding the energy levels, we can imagine three kinds of optically induced transitions in
this system: An oxygen ligand electron jumping to a predominantly copper orbital is known
as a charge transfer (CT) transition. In transition metal compounds these broad transition
bands usually start in the blue/UV region of the spectrum. The features visible in the ellip-
sometry data (�gure A.5) at 4/5.5eV and possibly also the one at the upper edge of the MOKE
spectra (�gures 4.5a and 4.6a) may mark the onset of the CT region.
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inter-d-d

intra-d-d

CT

Figure 4.13.: Crystal �eld splittings of the two di�erently coordinated copper ions. Transitions from
the oxygen p-levels are also possible.

The transfer of an electron between the two di�erent copper sites is known as an inter-d-d
transition. In DFT calculations[27], it is shown that the two di�erent copper sites are antifer-
romagnetically coupled, thus no spin �ip is needed to make the transition between the two
highest orbitals.
Transitions between the split d-levels of one ion are usually forbidden due to symmetry.
However, due to the crystal �eld distortions and the low-symmetry arrangement of the oxy-
gen ligands, these intra-d-d transitions may become possible. The features in the lower part
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of the measured spectra may correspond to either of these d-d transitions.
The transmission window around 2.3eV is likely the interval between two transitions. Here,
the in�uence of the neighboring oscillators is high enough to induce a Faraday rotation, but
the oscillator strength is su�ciently low to allow high transmission at this point. Improved
DFT calculations and the consideration of the cluster model may help shine light on these
processes.

4.6. Faraday Measurements

We continued with Faraday measurements on sample 2 which was previously polished from
both sides to get optimum transmission. The Faraday rotation values measured around
540nm are indeed large, as we previously suspected in section 4.4. This is problematic, since
we rely on the small angle approximation at a very early stage of our measurement setup (see
section 2.2). However, there are three ways in which we can get information on the rotation
behavior:

1. Beyond the range of a few degrees, the linear relation between the signal output and
the actual rotation angle is no longer valid. However, we know that the ratio I2f

IDC
as

output by the detector has a π -periodic angle dependence (see also �gure 2.5). Because
of this, we can estimate the angle between two maxima (or any two points with the
same phase) to be around 180 degrees.

2. Additionally, we can measure the slope of the signal in a small angle region, for example
in the interval [-5mT,5mT]. This will give us a value in terms of deg

mT that we can use to
extrapolate.

3. We can remove the PEM from the setup and just use two crossed polarizers. This will
result in a sin2-like curve. With a �t function or by measuring the distance between
two maxima one can read o� which change in magnetic �eld causes a rotation of 180
degrees.

The following values should be considered estimates. For an exact determination, a thinner
sample is needed to produce smaller rotations, which at the time of this thesis was not avail-
able.
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Verdet Constant

For technical applications such as optical isolators (also known as optical diodes), it is ben-
e�cial to achieve large polarization rotations over a short distance. The phenomenological
constant determining this rotatory "power" is the Verdet constant with units [V ] = deg

cm·T
or similar. In paramagnetic and diamagnetic materials with negligible magnetization, this
constant is given in terms of the externally applied magnetic �eld. However, in ferro- and
ferrimagnets, there is strong internal magnetization and the exact magnetization behavior is
not always linear or even known. For these materials, it is common[28] to de�ne a speci�c
Verdet constant ρF = θF (Ms )

l , which is the Faraday rotation at saturation magnetization Ms

per length of the material traversed.

∆B

∆θ

(a) Determination of the slope in a small �eld
interval: ∆θ

∆B = 0.964degmT
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I D
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(b) Signal measured with crossed polarizers
(without PEM). A �t with the function
f (B) = y0 + A sin2 π

ω (B − B0) yields ω =
141.

Figure 4.14.: Measurement of the Faraday e�ect at 10K and 540nm

We used methods 2 and 3 in �gure 4.14. For this particular sample, method 2 yields a value of
∆θ
∆B = 0.964degmT , method 3 gives a slightly larger value of 1.277degmT . This shows that the mag-
netization behavior is not linear, as expected. To estimate the e�ective Verdet constant at
saturation magnetization, method 3 seems more appropriate, as it spans a larger �eld range
in its calculation.
If we assume the sample to be 1mm thick and the saturation value to be at 165mT, we receive
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a value of:

ρF(540nm,10K) ≈ 2100degcm (4.7)

For optical isolators, it is also desirable to have as little of the beam absorbed as possible.
A �gure of merit for these types of devices can thus be given by the ratio η = ρF

α , where α
is the absorption constant for the material at a particular wavelength. We can do a better
estimation of the �gure of merit than for the e�ective Verdet constant, because the sample
thickness cancels out of the equation. Based on our measurements, it is given by:

η(540nm,10K) = 2100degcm /25.4
dB
cm = 82.7degdB (4.8)

Commonly used materials in Faraday isolators are TGG (terbium gallium garnet, Tb3Ga5O12)
for the optical range and YIG (yttrium iron garnet, Y3Fe5O12) for the near infrared. TGG
is a paramagnet with a Verdet constant of -76.78 deg

T·cm at a wavelength of 632nm at room
temperature [29]. It is outclassed by two orders of magnitude at low �elds by Cu2OSeO3,
albeit at very di�erent temperatures. In the near infrared, there are di�erent doped YIG
compounds that show an even higher e�ective Verdet constant. Some exemplary values
can be found in table 4.15. The �gure of merit values measured for Cu2OSeO3 rank above

301 7.2 Faraday effect

Table 7.2 Specific Faraday rotation of representative ferromagnetic and ferrimagnetic
materials at 300 K

Wavelength Specific rotation Absorption coefficient Figure of merit
Material λ (nm) ρF (◦ cm−1) α (dB cm−1) ρF/α (◦ dB−1)

Fea 546 3.5 × 105 3.3 × 106 0.11
Co 546 3.6 × 105 3.7 × 106 0.10
Ni 400 7.2 × 105 9.1 × 105 0.79
MnBi 632.8 5.3 × 105 3.3 × 106 0.16
YIGb 1064 280 65 4.3

1150 250 54 4.6
1200 240 50 4.8
1310 224 35 6.4
1550 216 23.8 9.1

YbBi : YIGc 1310 760 38 20
1550 404 15.7 25.8

Bi : YIGd 1550 −1250 2.7 463
Ce : YIGe 1310 −2510 9.8 256

1550 −1310 2.7 486

a Freiser, M. J., IEEE Transactions on Magnetics MAG-4: 152–161, 1968. Same source for Co and
Ni.
b Y3Fe5O12: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions on Microwave
Theory and Techniques 47: 2294–2298, 1999; Zhao, W., Sensors and Actuators A 89: 250–254, 2001;
and assorted other sources. The absorption coefficients of YIG cited here are much higher than those
reported in old literature.
c YbyBix Y3−x−yFe5O12 with x = 1.03, y = 1.12: Zhao, W., Sensors and Actuators A 89: 250–254,
2001. The properties of YbBi : YIG vary with Yb and Bi concentrations.
d Bix Y3−x Fe5O12: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions on Microwave
Theory and Techniques 47: 2294–2298, 1999. The properties of Bi : YIG vary with Bi concentration.
e Cex Y3−x Fe5O12 with x = 0.5: Sekijima, T., Fuji, T., Wakino, K., and Okada, M., IEEE Transactions
on Microwave Theory and Techniques 47: 2294–2298, 1999. The properties of Ce : YIG vary with
Ce concentration.

The Faraday rotation is positive when the value of θF, or that of ρF, is positive,
meaning that the rotation is counterclockwise when viewed in the direction against
that of H0, or that of M0 when an internal magnetization exists. Therefore, the sense
of positive Faraday rotation is the same as the electric current that generates H0 or,
in the case of ferromagnets and ferrimagnets, the current that can be conceptually
associated with M0. Using the right-hand rule, the axial vector corresponding to a
positive Faraday rotation points in the same direction as that of the H0 or M0 causing
the Faraday effect. For negative Faraday rotation, the sense of rotation is opposite to
that for positive Faraday rotation. Figure 7.1 summarizes these concepts.

The Faraday rotation in a diamagnetic material is positive because its Verdet constant
is positive, whereas that in a paramagnetic material is negative because its Verdet

Figure 4.15.: A list of speci�c Verdet constants and �gures of merit of several ferri-/ferromagnets.
Table from [28]. All values are at room temperature.

undoped YIG compounds, although it has to be taken into account that the values in table
4.15 are given at room temperature. For higher temperatures, the absorption coe�cient of
Cu2OSeO3 rises, reducing its �gure of merit considerably. Also, the large rotation ceases
above TC , which makes an application above 60K unrealistic at this point.
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5. Conclusion and Outlook

During the course of this thesis, a polarization spectrometer was constructed and charac-
terized. The setup gives good results that are in agreement with results from the literature.
The measurements performed allowed us to gain an insight into the magnetic phases of
Cu2OSeO3 in a purely optical way. Also, the goal of �nding signatures of the skyrmion
phase using polarization optics was reached. At low temperatures, Cu2OSeO3 was shown to
have a fairly high Verdet constant and high transmission in an energy region around 2.3eV.
To move forward, it would be preferential to continue the measurements with thinner sam-
ples of di�erent orientations. Then, high resolution Faraday measurements could be carried
out with the PEM in place. With the help of low-temperature ellipsometry data, one could
calculate the full dielectric tensor and learn more about the oscillators and transitions that
lead to the optical phenomena we observe.
Although an application of the material in a Faraday rotator would certainly be possible be-
cause of its high rotatory power in the optical range, its low critical temperature of around
60K probably prevents Cu2OSeO3 from becoming a competitor to the wide-spread YIG and
TGG systems. A change in the magnetic properties and the position of the transmission win-
dow might be achieved with doping. Also, the investigation of thin-�lm Cu2OSeO3 should
be an interesting endeavor as well, especially since a MOKE measurement would be ideally
suited for this type of sample.
A logical next step would be the realization of time-resolved MOKE or Faraday measure-
ments: Characteristic magnons have been identi�ed in Cu2OSeO3 in microwave studies[30],
which should be visible as decay channels in a time-resolved measurement.
Apart from the multitude of di�erent possibilities with Cu2OSeO3, the polarization spectrom-
eter setup can also be used to study other materials with interesting magnetization behavior.
A useful addition to the setup would be a more �exible magnet to measure other con�gura-
tions such as transversal and longitudinal MOKE. Also, the use of a di�erent detector would
enable us to conduct measurements in the near-infrared spectral region.
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A. Appendix

A.1. Parabolic Mirrors and Polarization Optics

Curved mirrors such as the o�-axis parabolic mirror discussed here are ideal for many op-
tical applications: Their focusing properties are based on the shape of the mirror surface,
thus they do not su�er from chromatic aberrations like lenses, which have a wavelength-
dependent focal length. An o�-axis parabolic mirror is a cutout of a parabola that inherits

(a) Chromatic aberration of a
convex focusing lens, im-
age from [31].
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NOTES/SPECIFICATIONS
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(b) Geometry of an o�-axis parabolic mirror, adapted from a Thor-
labs data sheet[32].

Figure A.1.: Curved mirrors do not display chromatic aberrations.

its re�ected focal length from the larger parent parabola (compare to �gure A.1b). Collinear
light coming from the positive z-direction is focused towards the optical axis of the parent
parabola. When re�ected from a smooth surface, the angle between the incoming beam and
the surface normal is equal to the angle between the outgoing beam and the surface normal.
Also, in- and outgoing beam lie in the same plane, the plane of incidence. In vector notation,
this reads:

kout(kin, n̂) = kin − 2(kin · n̂) · n̂ (A.1)
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Here, n̂ = n
|n| is the normalized surface normal and kin/out are the in and outgoing propagation

vectors of the light. With this, one can model the behavior of a parabola cutout1 and can
indeed �nd that collimated incoming rays are focused in a point F (�gure A.2). We would

Figure A.2.: An o�-axis parabolic mirror focusing collimated light.

now like to know what the polarization of the re�ected light is when viewed from the sample,
i.e. the point F. To extend the model to include the polarization, we look at a collinear bundle
of incoming rays with the polarization Ein, obeying the relation Ein · kin = 0. One has to
keep in mind that s- and p-components of the electric �eld are re�ected di�erently from the
mirror surface: The direction of the s-polarization stays constant on re�ection, whereas the
direction of the p-component is changed[33]. We thus decompose the polarization of each

Es
in outEs

(a) The s-component of
the polarization does
not change direction on
re�ection.

Ep
in outEp

(b) Behavior of the p-
component of the electric
�eld on re�ection.

Figure A.3.: Di�erence between s- and p-re�ection.

ray into a local s- and p-component, depending on the orientation of the surface normal n̂

1To get the parabola surface as it appears for our particular mirror (compare to the datasheet in �gure A.1b),
we can use the function z (x ,y) = (x2 + y2)/12 in the region (x − 6)2 + y2 ≤ 1.
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and the propagation vector kin:

ŝin = kin × kout, ŝout = ŝin (A.2)

p̂in = kin × ŝin, p̂out = kout × ŝout (A.3)

y Ep = p̂in · Ein, Es = ŝin · Ein (A.4)

At this point, we have the polarization in terms of the local coordinates Ep and Es. If needed,
one can now include a re�ectivity dependence: For metals like aluminum, there is usually a
few percent deviation between rs and rp. In this calculation, we will assume rp = rs = 1.
This can also be written in terms of a matrix multiplication[34]:




Ep

Es

0



=




p̂xin p̂
y
in p̂zin

ŝxin ŝ
y
in ŝzin

kxin k
y
in kzin



·




Exin
E
y
in

Ezin




(A.5)

To �nish the analysis, we have to transform the polarization components from the local
coordinates back to an expression in terms of êx , êy and êz . For this, we multiply the vector
( Ep Es 0 )ᵀ with the transposed shape of the matrix used in equation A.5, with the incoming
vectors now replaced by the outgoing ones:




Exout
E
y
out

Ezout



=




p̂xout ŝxout kxout
p̂
y
out ŝ

y
out k

y
out

p̂zout ŝzout kzout



·




Ep

Es

0




(A.6)

In �gure A.4, the calculation has been performed for light that is s-polarized with respect to
the mirror center. The deviation of the polarization rotation is color-coded. In the neutral
area in the middle, the re�ected polarization corresponds to the original linear polarization.
If one goes further outward, the direction of the polarization is rotated. This makes o�-axis
parabolic mirrors unsuitable for applications where the polarization of the light has to be
preserved.
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Figure A.4.: Polarization rotation induced by a parabolic mirror, as seen from the focal point F.

A.2. Bessel Function Identities

The identities

cos(δ0 sin(ωt )) = J0(δ0) + 2
∞∑
n=1

J2n (δ0) cos(2nωt ) (A.7)

sin(δ0 sin(ωt )) = 2
∞∑
n=0

J2n+1(δ0) sin((2n + 1)ωt ) (A.8)

can be proven with the generating function of the Bessel functions. The derivation of this
generating function is not given here. It can be found, along with the full proof, in [35].

e
x
2 (z−z

−1) =

∞∑
n=−∞

Jn (x )z
n (A.9)
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We write z = eiϕ and i sinϕ = 1
2 (e

iϕ − e−iϕ ) = 1
2 (z −

1
z ). Thus we can rewrite the generating

function:

e
x
2 (z−z

−1) = eix sinϕ = cos(x sinϕ) + i sin(x sinϕ) =
∞∑

n=−∞

Jn (x )e
inϕ

=

∞∑
n=−∞

Jn (x ) (cosnϕ + i sinnϕ) (A.10)

Then, splitting up real and complex parts and using the fact that Bessel functions of odd
(even) order are odd (even) functions, we get:

cos(x sinϕ) =

��
�
��

�
��
�H

HHH
HHH

HH

∞∑
n=−∞
n odd

Jn (x ) cosnϕ +
∞∑

n=−∞
n even

Jn (x ) cosnϕ

= J0(x ) + 2
∞∑
n=1

J2n (x ) cos 2nϕ, (A.11)

sin(x sinϕ) =
∞∑

n=−∞
n odd

Jn (x ) sinnϕ +

��
��

�
��

��HHH
HHH

HHH

∞∑
n=−∞
n even

Jn (x ) sinnϕ

= 2
∞∑
n=0

J2n+1(x ) sin(2n + 1)ϕ � (A.12)

Table A.1.: Some Jones vectors and matrices used in the thesis. For more elements, see e.g. [6].
polarization

state
Jones
vector

horizontal linear
(
1
0

)
vertical linear

(
0
1

)
+45◦ linear 1√

2

(
1
1

)
general linear

(angle α to x axis)

(
cosα
sinα

)
right circular 1√

2

(
1
−i

)
left circular 1√

2

(
1
i

)

optical element Jones matrix
general linear polarizer

(angle α to x axis)

(
cos2 α cosα sinα

sinα cosα sin2 α

)
quarter wave plate e−i

π
4

(
1 0
0 i

)
phase retarder

(
eiϕx 0
0 e−iϕy

)
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A.3. Ellipsometry

Preliminary ellipsometry results in �gure A.5 have been obtained by I. Vergara. The mea-
surement was done at room temperature, low temperature results were not yet available
during the writing of this thesis.
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Figure A.5.: Preliminary ellipsometry data of Cu2OSeO3 taken by I. Vergara.

A.4. Measurement So�ware

The measurement software for the polarization spectrometer has been implemented in LabVIEW.
Two programs were made:
The �rst one takes polarization spectra over a wavelength interval with a selectable step
size (see �gure A.6). Once the parameters (start wavelength, end wavelength, step size,
lock-in ampli�cation settings) are put in, the measurement is automatic: The PEM and the
monochromator wavelength settings are changed in unison, the �lter wheel is rotated to the
value appropriate for the current wavelength. Magnitudes and phases of the two lock-ins are
collected at the dc/chopped frequency and the PEM �rst and second harmonics. Changes in
temperature are tracked, the rotation and ellipticity values are divided internally. The output
�le then contains one row for each wavelength step measured.
The second program (see �gure A.7) records the polarization state for a single wavelength
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Figure A.6.: Screenshot of the software used to record MOKE spectra. Once the parameters are put
in, the measurement is fully automatic.

in time and can be used to track a magnetic �eld sweep or the behavior over a temperature
range. Once the program is set to a certain wavelength, it continuously collects data (mag-
nitudes, phases, temperature, magnetic �eld) several times a second. The magnetic �eld or
temperature sweep can be controlled with the interface depicted in �gure A.8.
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Figure A.7.: Screenshot of the software used to record magnetic �eld sweeps. All values are contin-
uously recorded until the measurement is stopped.

Figure A.8.: Screenshot of the control panel for the Oxford cryostat and magnet. The temperature
controller can either be controlled by hand or hold a set temperature automatically. The
magnet supports sweeps with customizable sweep rates.
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Abstract

During the course of this thesis, a polarization spectrometer was built. It is capable of
high-resolution measurements of magneto-optical e�ects, such as the magneto-optical Kerr
(MOKE) and Faraday e�ects. The measurement process has been mostly automated with
custom-made software. A mathematical treatment of the measurement method and its limita-
tions is given. After testing and optimization of the setup, measurements were performed on
the magneto-electric insulator Cu2OSeO3 which hosts a skyrmion phase. With the magneto-
optical measurements, it is possible to create a magnetic phase diagram of the compound,
which replicates results gathered in neutron scattering experiments with an all-optical tech-
nique. Cu2OSeO3 is shown to have a very large Verdet constant in a small transmission
region in the optical range and possible implications of this are discussed.
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