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1 Introduction

Beta-zinc sul�de ZnS has been the �rst mineral of Wurtzite structure that has
been discovered. It was named by its discoverer Charles Friedel after his teacher
the French chemist Charles-Adolphe Wurtz. However, many other crystals are
isostructural e.g. AgI, ZnO, CdS, CdSe, BeO, GaN, AlN. All these crystals and
many others are build up by a rhombohedral prism as unit cell that contains
four ions, for instance in the case of ZnO two zinc ions and two oxygen ions.

2 Crystal structure

In general a crystal structure is determined by two components, the lattice and
the unit cell. The latter is repeated periodically with respect to the former
(Fig.1). Fortunately there are only 7 di�erent crystal systems in 3 spatial di-
mensions which gives rise to 14 di�erent lattices. In particular the Wurtzite
structure belongs to the hexagonal lattice. A sketch of the crystal structure i.e.
the positions of the ions within the crystal is shown in Fig. 2. The building
blocks are corner sharing tetrahedra that consists of four oxygen ions on its
corners centered by a Beryllium ion in the case of Beryllium oxide (BeO). In
order to characterize the symmetry of a crystal unambiguously it is necessary to
specify the so called space group which consists of all symmetry transformations

  

unit cell

Figure 1: A crystal in 2 dimensions. The unit cell is shown on the left. The lattice
is build up by repeating the unit cell in all (two) directions. The lattice vectors, i.e.
the minimal translations of the lattice, are shown by the red arrows and the orange
dots indicate lattice points.
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Figure 2: The crystal structure of BeO. The unit cell is indicated by blue lines, the
oxygen tetrahedra around the Beryllium ions are shown in light blue. Left: view along
the c-axis, middle: view along the b-axis, right: overview.

that leave the crystal structure invariant. All in all there are 230 di�erent space
groups. A space group is obtained by all translations and rotations/re�ections
that leave the crystal invariant. All possible translations are given by vectors
that start and end on lattice points. The crystal will have at most the full point
group of the lattice (called holohedry) or the symmetry is lowered to a subgroup
of the holohedry. In case of the Wurtzite structure the space group is P63mc
(no. 186). The corresponding point group is C6v. The symmetry elements of
C6v are given in Fig.3. Note, that beside pure rotations there are screw axes
and glide planes which are the symmetry operators 4, 5, 6 and 10, 11, 12, respec-
tively (form Fig. 3). The unit cell consists of four ions, as shown in Fig.3,
the cell parameters are a = b = 2.6984 Å and c = 4.2770 Å. The Be ions
are at the positions ( 1

3 ,
2
3 , 0) and ( 2

3 ,
1
3 ,

1
2 ), the oxygen ions at ( 1

3 ,
2
3 , 0.3786) and

( 2
3 ,

1
3 , 0.3786 + 1

2 ) with respect to the cell parameters. Note that there are only
two ions of each sort within the unit cell since the positions of the oxygen and
Beryllium ions are on a threefold axis, i.e. of higher symmetry than a general
position. In a general position every symmetry operator will generate an ad-
ditional ion position so that at most there will be 12 ions that are symmetry
equivalent.

Figure 3: Left: the unit cell of BeO. Right: The location of the symmetry operators
of the point group within the unit cell is shown. The action of the 12 symmetry
transformations on an arbitrary position (x, y, z) is listed.
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Figure 4: Acoustic and optical modes in a two atomic chain. The orange box indicate
the unit cell. Top row: atoms at rest position. Second row: acoustic mode - all atoms
in the unit cell move in the same direction. Third row: for the optical mode the ions
within the unit cell move in di�erent directions. Note, that acoustic and optical mode
are at a �nite wavelength. Bottom row: optical mode at in�nite wavelength. The
energy of the optical mode is �nite even for in�nite wavelength (k = 0), whereas the
acoustic mode at in�nite wavelength (k = 0) corresponds merely to a translation of
the crystal. Hence it does not change the internal energy.

3 Phonons

In a crystal the ions have �xed positions that are repeated within a periodical
lattice. For these positions the potential energy of the crystal is minimized
therefore deviations of these equilibrium positions will raise the total energy. In
a quantum mechanical point of view one thinks of excited states separated from
the ground state by one (or several) energy quantum (phonons) analogous to
the discrete energy levels of the harmonic oscillator.
For these excited states the displacement of the ions will not have an arbitrary
pattern since the elongation of one single ion would in general cause other ions
to be displaced, too via interactions between them. However there exist pat-
terns of displacements that are independent of each other in the sense that if
one pattern is excited it does not involve the other patterns. The vibrational
excitations that correspond to these patterns are called Eigenmodes of the crys-
tal. These Eigenmodes have characteristic frequencies ωi (energies ~ωi). The
frequency of the Eigenmodes depend on the particular pattern of elongations as

Figure 5: Eigenmodes of di�erent symmetry of a square. Consider a rotation by π
2

that takes the square onto itself. The left pattern is mapped onto itself whereas its
right neighbor is mapped onto minus itself. The two patterns on the right are mapped
onto the respective other, i.e. they are degenerate.
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Figure 6: The movement of ions within the unit cell for the di�erent phonon sym-
metries of the Wurtzite structure. To each of the E modes corresponds a second mode
with an elongation along the y-direction. These modes are degenerate to the ones in
x-direction and are not shown for clarity.

well as the wavelength λ or the wavevector k = 2π
λ , respectively, i.e. the spatial

periodicity. The number of independent patterns can be easily obtained by con-
sidering the case of in�nite wavelength (k = 0), since one has only to account
for the displacement patterns within the unit cell. Assuming N ions within the
unit cell each of them provides three degrees of freedom one for a displacement
in x- y- and z-direction. Hence the total number turns out to be 3N . The 3
acoustic modes become for k = 0 merely translations of the hole crystal that
do not change the internal energy so that they have to be subtracted from this
number. Therefore 3N − 3 is the number of optical phonons. All these patterns
of elongations qi have to go under the symmetry transformations of the crystal
either onto itself (qi) or onto minus itself (−qi) in order to restore the energy of
the mode, which is quadratic in the elongation (U ∝ q2i ). There might occur as
well the case that two (or in general also three) modes have the same pattern
and di�er only in direction, i.e. they are degenerated. The behavior of the pat-
tern of Eigenmodes under application of symmetry operators can be classi�ed
by irreducible representations of the symmetry group1.
The displacements of the ions within the unit cell are shown in Fig. 6 for the
di�erent phononmodes at k = 0 of the Wurtzite structure. The number of modes
is determined to be 3 × 4 − 3 = 9 (four ions in the unit cell). Note that the
modes of E1 and E2 symmetry are degenerate with modes of the same pattern
elongated in the y-direction. So that they account for two modes, respectively.
Whether a phonon mode occurs in the infrared spectrum or not depends whether
the mode changes the dipole moment within the unit cell or it does not. In order
to occur in a Raman spectrum the mode has to change the polarizability of the
crystal.

1A set of matrices that obey the same product relations than the elements of the symmetry

group is called representation of the group. If all matrices of the representation cannot be

brought into block-diagonal form simultaneously, the representation is said to be irreducible.

The irreducible representations according to which the patterns of vibrations transform are

only used here to label the di�erent vibrations.
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