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1 Introduction
In this experiment Fourier spectroscopy will be used to measure the reflectance
of BeO in the infrared range. The signature of phonon modes can be observed
within this spectral range. As a single crystal is used, the measurement can be
performed for different directions of the polarization of the incident light. In
addition the influence of parameters used in the Fourier transformation will be
studied. Fourier spectroscopy provides a powerful tool for the investigation of
the optical properties in the far infra-red(FIR) and mid infra-red(MID).

2 Preparation

2.1 Theory
• Fourier spectroscopy [1] (part 1)

• Zerofilling factor [1] (part 1)

• Apodization function [1] (part 2: 2.1 and 2.2)

• Drude-Lorentz model

• Phonons

• Drude model of the electrical conductivity [5]

• Beryllium Oxide structure

• Linearly polarized light

2.2 Software
• ReFit, read the user manual sections: 1.2; 2.2.1; 2.2.2; 2.2.3

• Do the tutorial 3.1 (keep in mind that in your experiment you will need
just one oscillator while in the tutorial you are using 2 oscillators and a
Drude peak)
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Figure 1: Light can be reflected, transmitted or absorbed by a sample.

2.3 Questions
• Once you obtained the dielectric constant (ε = ε1+iε2) from the measured

reflectivity, how can you calculate complex conductivity (σ = σ1 + iσ2)
and refractive index (N = n+ ik)?
What is the relationship between ε, σ and N? [5]

• Assume to shine linearly polarized light on a dipole, with light propaga-
tion parallel to dipole axis (electromagnetic field of light and dipole are
oscillating at the same frequency).
Dipole and plane of polarization form an angle. How does the coupling of
light with dipole depend on this angle?

3 Physical background

3.1 Fourier spectroscopy
The importance of optical properties for understanding the physics of the solid
state has motivated the experimentalists to measure them accurately. The di-
electric function ε or the optical conductivity σ are hard to measure directly.
The quantities one is able to observe in experiment are the transmittance T and
the reflectance R.1
In order to obtain the reflectance and the transmittance of the sample, it is
necessary to compare the reflectivity spectrum and the transmission spectrum
, respectively to a reference spectrum. For the reflectivity reference, the reflec-
tivity spectrum of a gold mirror is used. For the transmission reference, the
transmission of an empty sample holder is used. The actual setup of switching
between the reference and the sample is shown in Fig.2
A straightforward experimental setup, which used to be used for decades, for
measuring T and R is shown in Fig. 3. Light coming from a source with a
continuous spectrum is split up into its frequency components by a grid. A light
with a narrow frequency range is picked up by a slit, passes the sample and is
measured by a detector. By repeating the measurement without the sample,

1In sophisticated experiments also other quantities are observed, e.g. by ellipsometry the
ratio Rp/Rs (Rp reflectance of light polarized parallel to the plane of incidence, Rs reflectance
of light polarized perpendicular to the plane of incidence) and the phase shift θ of the reflected
light are measured. From these two quantities other optical properties are obtained.
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Figure 2: The position of the sample and of the reference can be switched rapidly at
any temperature. Both are mounted on the same copper plate. The picture is taken
from [?].
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Figure 3: The principle setup of a spectrometer using a monochromator. The light
from the source is passing a grid first. Under a certain diffraction angle, a narrow
frequency band with its maximum at that angle is selected by a slit. The beam is
passing the sample and is detected by a detector D.

the reference is obtained. The quotient of the transmission with sample and
transmission without sample is the transmittance at that frequency. However
it is replaced by Fourier spectroscopy, since the range can be measured at once.
The principle experimental setup of a Fourier spectrometer is shown in Figs.
4 and 5. The light passes through a Michelson interferometer before hitting
the sample. The striking difference to the conventional setup is the absence
of a monochromator. So there is no elimination of frequencies before hitting
the sample. Also the detector is not sensitive to the wavelength of the incident
light (in contrast to the human eye). It measures only intensities, as function
0of time. Actually the frequency dependent spectrum is calculated after the
measurement. The trick is that during a measurement one of the mirrors of
the interferometer is moving. Hence the length of the path for the bundle of
light reflected at the moving mirror is varying with time in comparison to the
one coming from the fixed mirror. Therefore this the intensity of light of one
wavelength is oscillating between constructive and destructive interference with
a period that is determined by the mirror velocity and the wavelength of the
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Figure 4: The principle components of a Fourier spectrometer. On the time scale
relevant for the detector, the light from the source has constant amplitude, indicated
by the orange line. After passing the interferometer, the amplitude depends on the
difference x (relative to the wavelength) of the paths the two beams have traveled
before interfering. Upon moving one of the mirrors, the amplitude oscillates in time
between constructive and destructive interference as indicated by the oscillating orange
line. After passing the sample the intensity is measured by a detector D.

light. As the velocity of the mirror is the same for all wavelengths, the period
of the oscillations is characteristic for the wavelength of the light. The intensity
oscillations can be detected by a detector. For a constant mirror velocity the
resulting intensity for light of one single wavelength will be a cosine measured
as function of the mirror position.
In one scan of the mirror all wavelengths from the source are measured simulta-
neously, giving a superposition of all cosine terms from all frequencies contained
in the spectrum of the source. The intensity as a function of the position of the
mirror is called interferogram. An example of an interferogram is given in Fig.
6. The original spectrum is obtained by decomposing the interferogram into
cosine terms. This decomposition is actually a Fourier transformation, from
which the name of the method is derived from.
So far we have discussed the basic mode of operation of a Fourier spectrome-
ter. However, there are more components which are essential for receiving the
spectrum of the sample. At first it is important to determine the position of the
mirror as a function of time. This is done by measuring additionally the inter-
ferogram of a laser which is detected by a diode after passing the interferometer.
The laser gives a well-defined cosine signal. Since the laser intensity is orders of
magnitude stronger than the intensity of the light coming from the source, the
signal obtained by the diode is not influenced by the light of the source. The
signal detected by the diode is used to trigger the detector, in a way that a data
point is collected whenever the mirror has moved by one laser wavelength.2 The

2In between two minima of the diode signal the detector is triggered electronically, giving
a higher density of data points. This is needed to measure a broader range of frequencies.
With the density of data points acquired for a laser frequency ωL, only a frequency interval
of width ωL/2 can be measured.
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Figure 5: Sketch of the Bruker IFS 66 v/S. All results within this work were obtained
with this spectrometer.

laser wavelength is known with high accuracy of 1 to 106. Compared to the use
of a momochromator, the advantages of Fourier spectroscopy in the infrared
range are

• due to the precise knowledge of the laser wavelength, Fourier spectroscopy
has a very high accuracy in frequency.

• short measuring times due to the measurement of all frequencies simul-
taneously. for the short measuring times all other parameters like for
instance the temperature stay constant between measuring the sample
and the reference.

• the resolution depends only on the length of the interferogram. It can
be increased by increasing the distance the mirror moves. Therefore no
intensity of the signal is lost, i.e. the signal-to-noise ratio is independent
of the resolution.

• due to the precise knowledge of the laser wavelength, Fourier spectroscopy
has a very high accuracy in frequency.
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Figure 6: In the upper panel an interferogram is shown. The peaks (white-light
position) correspond to the position for which both mirrors have equal distance to
the beamsplitter. Two peaks occur because the mirror has been moved forward and
backward, crossing the white-light position twice in one scan. In the lower panel the
part between the dashed lines (in the upper panel) is plotted on an enlarged scale in
order to show the detailed structure of the interferogram. The inset displays the fine
structure of the interferogram away from the white-light peak. It has the same x axis
as the whole panel but is enlarged in y direction.

The spectrum consists of discrete data points. Therefore a discrete form of the
Fourier transformation has to be used.

S(k · 4ν) =

N−1∑
m=0

I(m · 4x) exp(i 2πkm/N)

with S intensity function of frequency (spectrum); k · 4ν discrete frequency; I
intensity function of mirrors position (interferogram); m · 4x descrete mirror
position; N number of measured points; m integer number in the range [0, N−1]
In comparison with the continuous transformation

S(ν) =

∫
I(x) · exp(i 2πν)dx

with ν ≡ k ·∆ν continuous frequency; x ≡ m ·∆x continuous mirror position.
The resulting spectrum of the Fourier transformation depends on varies param-
eters. The wrong choice of these parameters can lead to non physically results.
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One mistake is due to the finite length of the interferogram, whereas the cosine
function extends from −∞ to ∞. The finite interferogram may therefore be re-
garded as an infinite interferogram times a function (apodisation function) that
is equal to zero beyond the range of the measured interferogram. The Fourier
transformation is also sensitive to this function, i.e. the result of the Fourier
transformation is a convolution of the infinite interferogram (which would give
the unaltered spectrum) and the apodisation function. Different Apodisation
functions can be chosen. They are basically equal to one in the measurement
range but the transition between zero and one is chosen differently. However,
this effect gets important only for rapid variation of the intensity within the
spectrum, i.e. for very sharp lines (compared to the frequency resolution). Such
features occur in spectra of for instance molecules.
When applying the Fourier transformation it is important that the frequency
range under investigation is at least as wide as the spectrum of the light source.
Otherwise frequencies higher than the cut-off frequency are folded back, falsi-
fying the resulting spectrum. It is also worth to note that the resolution of the
spectrum corresponds to the length of the interferogram, and that the resolution
of the interferogram determines the width of the spectral range obtained. This
correspondence opens the opportunity to increase the density of points in the
spectrum by adding zeros to the interferogram. However, this is not increasing
the information but corresponds to a smoothing through the discrete spectrum.
The final remark is about the occurrence of a phase 6= 0 of the cosine terms
due to a deviation of the mirror symmetry of the measured interferogram at the
white-light position. The asymmetry results form the discrete structure that is
in general not centered exactly at the white-light position. This phase shift is
corrected by taking the absolute value of the amplitude.
In conclusion, Fourier spectroscopy is an excellent tool for the investigation of
optical properties of matter. It is fast and provides a very high accuracy. The
commercially available spectrometer comes along with a software which makes
the measuring procedure rather convenient and the results very satisfying.
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3.2 Interaction of light and matter

3.3 IR absorption
In crystals vibrations can be excited via two physical mechanisms: the absorp-
tion of light quanta (IR absorption/spectroscopy) and the inelastic scattering
of photons (Raman spectroscopy). Based on selection rules, not all vibrational

Figure 7

modes present in a crystal can be observed via IR Spectroscopy or Raman spec-
troscopy. Modes observable with IR spectroscopy are called "IR active"; modes
observable by Raman spectroscopy are called "Raman active".
In order for a vibrational mode to be "Raman active", it must be associated
with changes in the polarizability.
In order for a vibrational mode to be "IR active", it must be associated with
changes in the dipole. A permanent dipole is not necessary, as the rule re-
quires only a change in dipole moment, for instance antiphase vibrations (optical
phonons). In order to observe a direct absorption, the oscillating electromag-
netic field of the incident photon has to couples with the dipole oscillating at
the same frequency.

Figure 8: Selection rules for Raman and for infrared activity of vibration.
Q represent the deformation due to vibration, α is the polarizability and PD is the
dipole moment.
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3.3.1 Drude-Lorentz model for dielectric function in insulators

In this section a microscope model for interaction between light and matter
will be discussed. Fourier spectroscopy is measuring the linear response of the
matter. This means the photons excites states out of the equilibrium and the
equilibrium is regained before the next interaction. In the classical picture
the interaction between the charged atoms and the electrons can be described
by Coulomb interaction. The oscillating electromagnetic field of the light will
displace charges from their equilibrium position. For a ionic crystal (like BeO)
the displacement of charges can be separated into different contributions shown
in Fig. 9.

Figure 9: Two different mechanisms leading to a dipole moment of an insulating
ionic crystal. (a) Shift of the negative electron against the positive nucleus. (b) Shift
of negatively charged ions M2 against the positively charged ions M1.

One way the dipole moment present itself is shifting the negatively charged elec-
tron against the positively charged nucleus. The second possibility is to displace
the negatively charged ions against the positive ones (ionic polarization). Its
resonance frequencies lies in the far-infrared region. This is the coupling of the
photons to phonons (lattice vibrations).
On this microscopic oscillators the Drude Lorentz is based. The displacement
of the charges by an external electric magnetic field can be translated into the
macroscopic quantity epsilon, the dielectric function. The relation between the
resonance frequency ω0, the scattering rate γ and the dielectric constant as a
function of frequency is derived below.

Known from classical mechanics, for external electromagnetic wave Ee−iωt.
Forced harmonic oscillator:

mẍ+mγẋ+mω2
ox = qEe−iωt (1)

Using Ansatz: x(t) = xoe
−iωt

With polarization: P = εo(ε− 1)E = Nqx
N density of dipoles, x displacement
The resultant dielectric function is:

ε = 1 +
ω2
p

ω2
o − ω2 − iωγ

(2)
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Where ω2
p = Ne2

εom
If we consider different contributions to polarization P from different modes,
the resultant dielectric function is a sum over all modes (j).

ε = 1 +
∑
j

ω2
p,j

ω2
o,j − ω2 − iωγj

(3)

Each mode/oscillator is characterized by:

Classically Q.M.
ωo,j Resonant frequency Energy difference between ground and excited state
γj Damping Scattering rate
ω2
p,j Plasma frequency Square of the dipole matrix element

3.3.2 Approximation for optical and IR region

All solid material have a number of strong excitations for high frequencies asso-
ciated with electronic transitions in the material. Their frequencies are usually
located in the far UV to X-ray wavelength region. Crystals have additional
strong oscillators with resonant frequencies in the IR region, associated with
vibrational modes in the lattice. Since we want to measure and study BeO be-
havior in IR region, there is no need to characterize modes at high frequencies.
The only relevant parameter is the total contribution in the IR range coming
from all modes at frequencies above the IR range (ε∞).
For frequencies lower than the resonant frequency ω << ωo

ε(ω << ωo) = ε∞ = 1 +
∑
j

ω2
p,j

ω2
o

(4)

So the final dielectric function in the IR range is:

ε = ε∞ +
∑
j

ω2
p,j

ω2
o,j − ω2 − iωγj

(5)

3.3.3 Drude-Lorentz method for metals

Here we apply the formalisms developed in the previous sections to the electro-
dynamics of metals, i.e. materials with a partially filled electron band. Optical
transitions between electron states in the partially filled band, the so-called
intraband transitions, together with transitions between different bands, the in-
terband transitions, are responsible for the electrodynamics. Here the focus will
be on intraband excitations.
The model due to Drude regards metals as a classical gas of electrons executing
a diffusive motion. The central assumption of the model is the existence of an
average relaxation time τ = 1/γ which governs the relaxation of the system to
equilibrium.
As we did previously we describe the system with Harmonic oscillator model
but this time without restoration force (since the free electrons are not bonded)

mẍ+mγẋ = −qEe−iωt (6)
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Solving the differential equation we find the dielectric function:

ε = 1−
ω2
p

ω2 − iωγ
(7)

Where ω2
p = 4πNe2

ε0me

The current density is defined: J = −Ne2v
with N the density of charge carriers; v is the carrier velocity, and −e is the
electronic charge
Assuming respectively applied electric field and conduction current density:

E = Ee−iωt J = Je−iωt

Substituting into the equation of motion we obtain:

J =
Ne2

me

1

−iω + γ
E (8)

For static field (ω = 0 or dJ
dt = 0) the value the conductivity reduces to the

known formula of the dc conductivity σdc [Ω−1cm−1]

σdc =
Ne2

meγ
(9)
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4 Experimental procedure
• Measure gold mirror with different zerofilling factors

• Measure gold mirror with different apodization functions

• Measure Reflectivity of BeO

• Measure Reflectivity of Stainless steel

5 Analysis

5.1 Zerofilling
Plot the three reference measurements (with different zerofillings) for one of the
negative peaks at around 1500 cm−1 Discuss which zerofilling factor describes
the peak better. Explain which factor you chose for the next measurement and
why. What does this negative peak represent?

5.2 Apodization function
Plot the three reference measurements (with different apodization functions) for
the same peak chosen in the previous section. Discuss which factor describes
the peak better.

5.3 Phonon measurement in BeO
Using "RefFit" fit with Drude Lorentz model the measured reflectivity (R) for
the measurement with polarizer at 0o and 90o. The range to fit should be about
500-1300 cm−1, but you should choose it (explain why you have to cut part of
your data before fitting it). Plot:

• Reflectivity vs freq. (both 0o,90o) with fitted curves.

• Refractive index vs freq. given by the model (both 0o,90o).

• Extinction coeff. vs freq. (both 0o,90o).

• Real dielectric function vs freq. (both 0o,90o).

• Imaginary dielectric function vs freq. (both 0o,90o).

Compare and discuss your results with the paper: "Optical Phonons in BeO
Crystals" [2]
Plot reflectivity at 45o (same range you have used for the fit), without fitting
it. Discuss what can you see and how you could eventually fit it.

5.4 Stainless steel measurement
Here the aim is to calculate the charge carrier density of the two stainless steel
samples.
Using "RefFit" fit the reflectivity up to about 5000cm−1 (you are free to choose
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even a wider range but be sure to neglect the data range where noise is over-
coming the actual signal).
As expected the measured reflectivity should be fit by a Drude-Loretz oscillator
for free electrons (ω0 = 0). But even if you are interested in characterising the
sample‘s behaviour for frequencies above 500cm−1 contribution coming from
phonons at lower frequencies have to be taken into account.
Therefore an additional oscillator is necessary with following parameters: ω0 =
200cm−1, ωp = 8000cm−1, γ = 200 (ωp and γ are allowed to change, while ω0

should be fix during the fit). Plot:

• Reflectivity vs freq. both: data and fit.

• Real conductivity σ1 vs freq. Just the free electrons component without
the one coming from phonons at low freq. (remove the oscillator at low
freq. before plotting σ1).

Calculate the charge carrier density using eq.(9) and reading σdc from the plotted
σ1 vs freq. In eq.(9) γ is in s−1 units while in RefFit is given in cm−1.
2πc ∗ γ[cm−1] = γ[s−1].
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