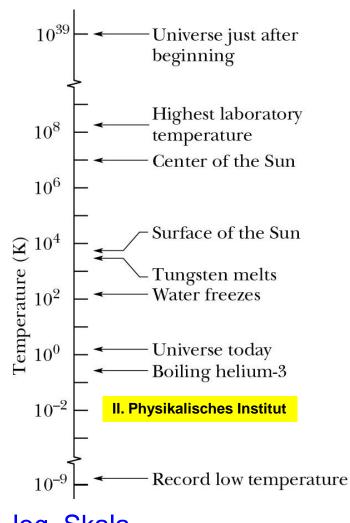

4. Wärmelehre (Thermodynamik)

- 4.1 Temperatur
- 4.2 Wärme
- 4.3 Hauptsätze der Thermodynamik
- 4.4 Ideales Gas
- 4.5 Diffusion
- 4.6 Phasenumwandlungen

4.1 Temperatur

Makroskopische Grundgrößen der Wärmelehre:

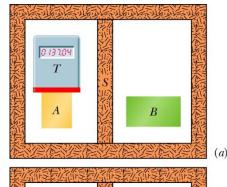

Temperatur und Wärme

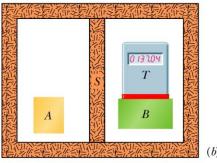
Mikroskopische Sichtweise:

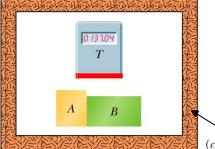
Temperatur T: Maß für die ungeordnete (Wimmel-)Bewegung der Atome und Moleküle; Maß für die innere Energie U SI-Einheit: **1 K** (*Kelvin*)

Wärme ist die zwischen 2 Systemen aufgrund eines Temperaturunterschiedes ausgetauschte Energie.

SI-Einheit: 1 J (Joule)




log. Skala, T = 0K unerreichbar


4.1 Temperatur

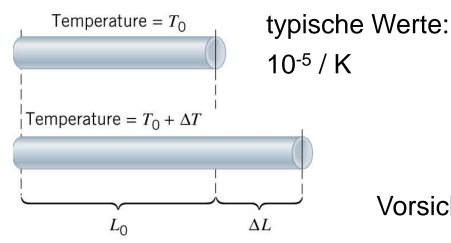
Messung der Temperatur T

Die meisten Eigenschaften der Substanzen sind T-abhängig Bsp.: thermische Ausdehnung, elektrischer Widerstand ρ, Gasdruck, ...

Der "Nullte Hauptsatz" der Thermodynamik:

Wenn sich zwei Körper A und B jeweils im thermischen Gleichgewicht mit einem dritten Körper T befinden, dann befinden sie sich auch untereinander im thermischen Gleichgewicht.

- → Jeder Körper besitzt die Eigenschaft "Temperatur"
- → Sind 2 Körper im thermischen Gleichgewicht, so sind ihre Temperaturen gleich (und umgekehrt)
- → Temperaturen können durch Kontakt mit Thermometern gemessen werden


Wärmeisolierung

4.1 Temperatur: Messung

Thermische Ausdehnung: i.d.R. dehnen sich Körper bei T-Erhöhung aus

$$\Delta \mathbf{L} = \alpha \cdot \mathbf{L}_0 \cdot \Delta \mathbf{T} \quad \text{(für kleine } \Delta \mathbf{T)}$$

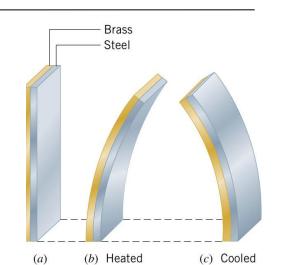
α: linearer Ausdehnungskoeffizient,

$$\Delta V = \beta \cdot V_0 \cdot \Delta T$$
 (für kleine ΔT)
 β : Volumenausdehnungskoeffizient

Für isotrope Materialien (d.h. keine Vorzugsrichtung): $\beta = 3 \alpha$

Vorsicht: α und β hängen von T ab \rightarrow Eichung

Bsp.: Bimetallstreifen

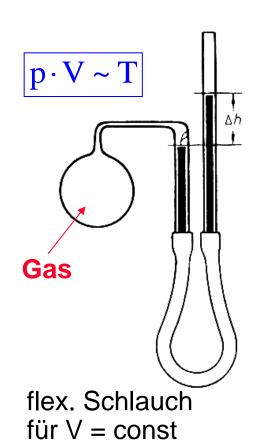

unterschiedliche thermische Ausdehnung

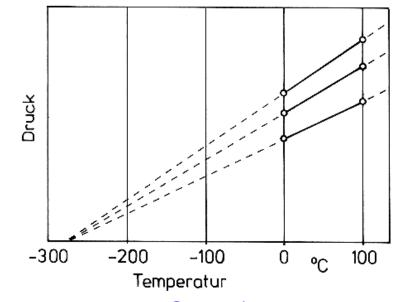
zweier Materialien

(→ therm. Schalter)

$$\Delta L_1 = \alpha_1 \cdot L_0 \cdot \Delta T$$

$$\Delta L_1 = \alpha_1 \cdot L_0 \cdot \Delta T$$
$$\Delta L_2 = \alpha_2 \cdot L_0 \cdot \Delta T$$




4.1 Temperatur: Messung

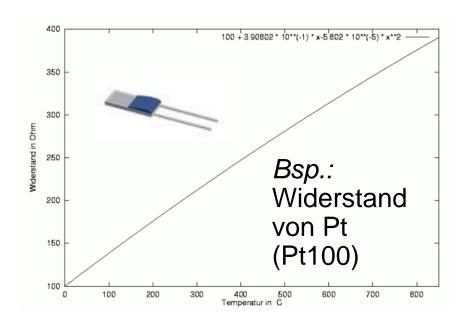
Messung der Temperatur

Bsp.: Gasthermometer

Druck eines (idealen) Gases bei konstantem Volumen

Boyle-Mariotte: $p \cdot V = const$

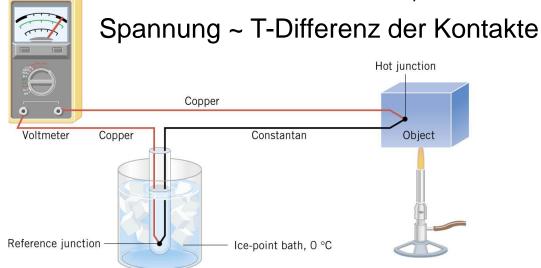
verschiedene Gase (z.B. H₂, N₂, He), kalibriert bei 0°C und 100°C

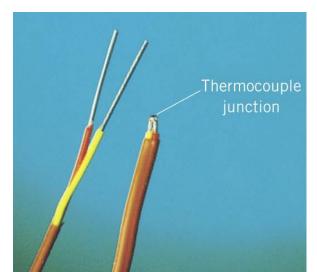

- → alle Geraden schneiden sich bei -273,15 °C (= 0 K)
- → Am absoluten Nullpunkt kommt die thermische Bewegung zum Erliegen!

Beachte: T = 0K unerreichbar

4.1 Temperatur: Messung

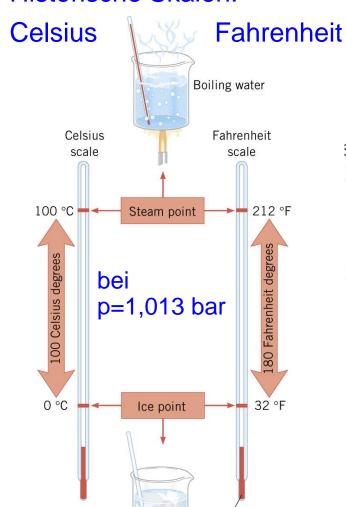
Messung der Temperatur


Bsp.: elektrischer Widerstand ρ



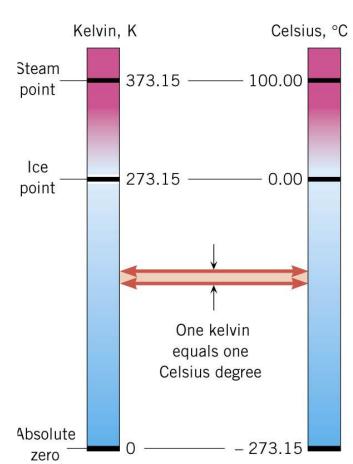
Bsp.: Thermospannung

2 unterschiedliche Metalle, an den Enden kontaktiert.


Temperatur (K)

4.1 Temperatur

Historische Skalen:



Bulb

Ice and water

Definition einer Temperaturskala

Zwei (experimentell gut definierbaren) Fixpunkten werden (willkürliche) Zahlenwerte zugeordnet, dazwischen erfolgt eine gleichmäßige Einteilung.

Physikalisch sinnvoll: "thermodynamische Temperaturskala" in Kelvin

Zahlenwertgleichung:

$$T_{Celsius} = T_{Kelvin} - 273.15$$
 identische "T-Schritte":

$$\Delta T = 1 K = 1 ^{\circ}C$$

Lediglich der **Nullpunkt** ist unterschiedlich festgelegt

4.2 Wärme

Innere Energie U = thermische Energie:

auf atomarer / molekularer Ebene: ungeordnete (Wimmel-)Bewegung

- kinetische Energie der Atome & Moleküle
- potentielle Energie (bei Wechselwirkung, Bindungen, Festkörpern)

Wärme ΔQ : die zwischen 2 Systemen aufgrund eines Temperaturunterschiedes ausgetauschte Energie

Eine Temperaturerhöhung um ΔT ist mit einer Zufuhr von Energie verbunden:

Wärmekapazität C eines Körpers (unterscheide p=const ≠ V=const, wichtig bei Gasen)

$$C = \frac{\Delta Q}{\Delta T}$$

 $C = \frac{\Delta Q}{\Delta T} \left| \begin{array}{c} \leftarrow \text{Ursache: zugeführte Wärme } \Delta Q \\ \leftarrow \text{Wirkung: Temperaturerhöhung } \Delta T \end{array} \right|$

Einheit C: 1 J / K

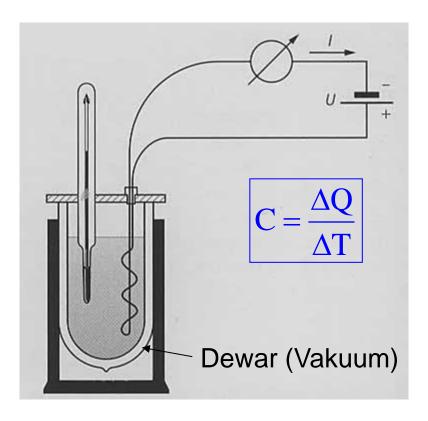
 $C \neq c$:

Eigenschaft eines Gegenstands ≠ Materials

Spezifische Wärmekapazität

$$c = \frac{\Delta Q}{m \Delta T}$$
 Einheit of the first contraction of the contracti

Molare Wärmekapazität


$$c_{molar} = \frac{\Delta Q}{n \Delta T}$$
 Einheit c_{molar} 1 J / (K mol)

4.2 Wärme

Messung von Wärmemengen in einem Kalorimeter

Messung von ΔT bei einer Substanz mit bekannter Wärmekapazität C liefert ΔQ

Wichtigste Referenzsubstanz: Wasser mit $c_{Wasser} = 4,18 \text{ J} / (\text{K g})$ (pro Kelvin *Gramm)

Messung der Wärmekapazität C:

Messung von ΔT bei Zufuhr einer bekannten Wärmemenge ΔQ

Wärmekapazität eines Menschen:

 $C(Mensch) \sim C(70 \text{ kg H}_2O) \sim 0.3 \text{ MJ} / \text{K}$

Leistung im Schlaf: 70 W = 0.252 MJ / h

→ entspricht Aufheizen um ca. 1 K / h bei völliger Isolierung

4.2 Wärme: Wärmeleitung

Wärmeübertragung durch: Wärmeleitung, Konvektion, Wärmestrahlung

Wärmeleitung: Transport thermischer Energie ohne Materietransport

Wärmestrom:

Einheit: 1 W

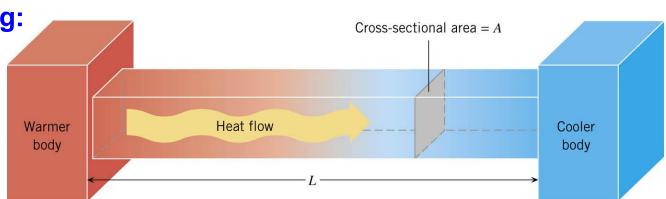
Erinnerung:

Volumenstromstärke $I_V = \Delta V/\Delta t$

Wärmestromdichte: $j_Q = \frac{1}{\Lambda}$

Einheit: 1 W / m²

Ursache für Wärmestrom: Temperaturgradient (Temperaturgefälle):


Einheit: 1 K / m

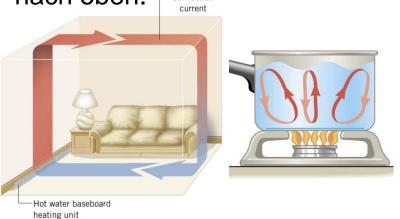
Wärmeleitungsgleichung:

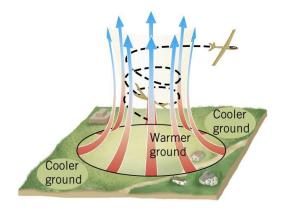
$$j_{Q} = -\lambda \frac{dT}{dx}$$

λ: Wärmeleitfähigkeit

Einheit λ : 1 W / K m Minus: Wärme fließt von warm nach kalt

Im Festkörper wird Wärme durch Gitterschwingungen und durch Elektronen transportiert. Metalle fühlen sich bei gleichem T kälter an als Holz


wegen ihrer größeren (elektronischen) Wärmeleitfähigkeit.


4.2 Wärme: Wärmeleitung

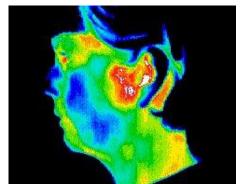
Wärmeübertragung durch: Wärmeleitung, Konvektion, Wärmestrahlung

Konvektion

Warme(s) Flüssigkeit / Gas hat geringere Dichte und steigt nach oben. — Convection

Wärmestrahlung

Jeder Körper **strahlt Energie ab** in Form von **elektromagnetischen**


Wellen (Licht) unterschiedlicher Wellenlänge.

Mit steigender Temp. verschiebt sich der Schwerpunkt der Strahlung zu kürzeren Wellenlängen (Wiensches Verschiebungsgesetz).

Im Wesentlichen wird Infrarot-Licht abgestrahlt, erst für T > 700°C wird die Strahlung für das Auge sichtbar.

Rettungsfolie: eine reflektierende Metallschicht (z.B. Alu) schickt die Wärmestrahlung zurück

4.2 Wärme: Wärmeleitung

Japanische Riesenhornisse ernährt sich von Bienen.

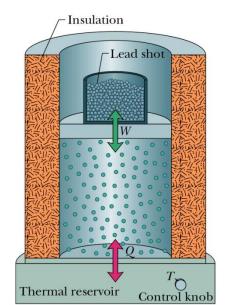
Hunderte Bienen bilden einen Ball um den Eindringling und erhöhen ihre Temperatur von 35°C auf ca. 48°C. Diese Temperatur ist für die Hornisse tödlich.

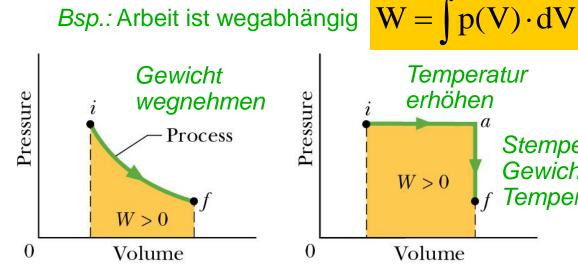
Wärmeverlust nach außen durch Wärmestrahlung.

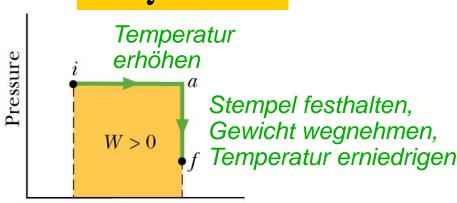
Wärme ist eine Form der Energie und muss wie mechanische Arbeit W in der Bilanz der inneren Energie U eines Systems auftauchen:

1. Hauptsatz (Energieerhaltung)

Wärme $\triangle Q$ und Arbeit $\triangle W$ sind wegabhängig; die Energie(-änderung) ∆U hängt dagegen nur von Anfangs- und Endzustand des Prozesses ab.

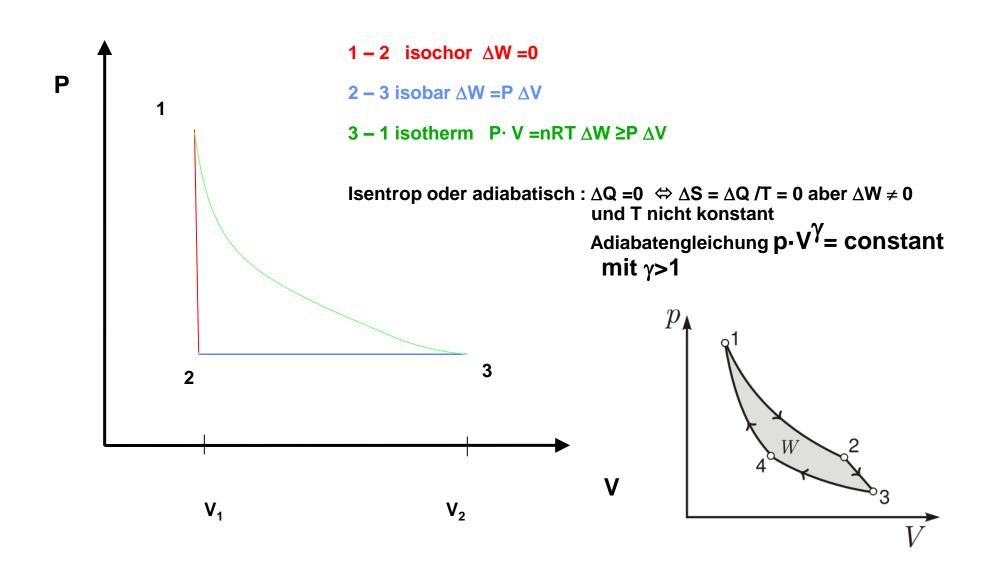

Der Zustand eines idealen Gases wird eindeutig durch p, V, T beschrieben.


thermodynamischer Prozess: langsame Überführung von Anfangs- in den Endzustand (System ist immer im Gleichgewicht)


$$\Delta \mathbf{U} = \Delta \mathbf{Q} - \Delta \mathbf{W}$$

 $\Delta \mathbf{Q}$: von außen zugeführte Wärme

∆W: vom System geleistete Arbeit



Volume

Kreisprozess

2. Hauptsatz

rür ein abgeschlossenes System

nimmt die Entropie S bei irreversiblen Prozessen zu

(niemals ab) und bleibt für reversible Prozesse konstant.

oder:

Es gibt irreversible Prozesse.

 $\Delta S \ge 0$

Definition der Entropie:

$$\Delta S = \frac{\Delta Q}{T}$$

 ΔQ >0: Wärme-Zufuhr ΔQ <0: Wärme-Abfuhr

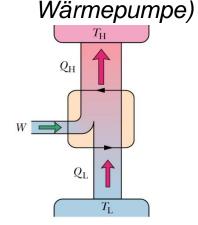
Irreversibel: Prozesse, die nur in eine Richtung ablaufen

- Bsp.: 1) Heißer Kaffee nimmt Zimmertemperatur an, erwärmt sich nie von selbst. d.h. Wärme geht nicht spontan von einem kälteren auf einen wärmeren Gegenstand über.
 - 2) Kiste mit $v_0 > 0$ kommt durch Reibung zum Stillstand, dabei wird kinetische Energie in Wärme überführt.

Aber: Kiste beschleunigt sich nie durch Abkühlung selbst

Die Irreversibilität resultiert aus der Entropie, nicht aus der Energieerhaltung.

Bsp. für einen reversiblen Prozess: isotherme Ausdehnung eines idealen Gases (mit Wärmeaufnahme aus einem Wärmereservoir,


 $\Delta S = 0$ für Gas + Wärmereservoir)

2. Hauptsatz

Für ein abgeschlossenes System nimmt die Entropie S bei irreversiblen Prozessen zu (niemals ab) und bleibt für reversible Prozesse konstant. oder:

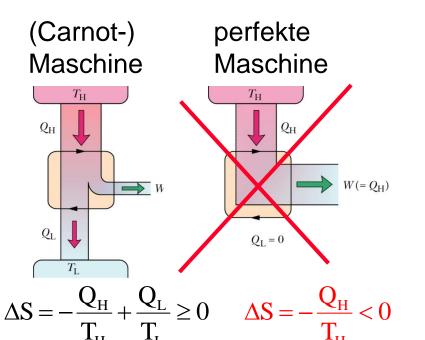
Es gibt irreversible Prozesse.

Kälte-Maschine (Kühlschrank,

$$\Delta S = -\frac{Q_L}{T_L} + \frac{Q_H}{T_H} \ge 0$$

Definition der Entropie:

$$\Delta S = \frac{\Delta Q}{T}$$

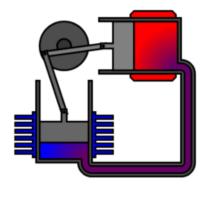

∆Q>0: Wärme-Zufuhr

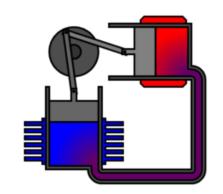
∆Q<0: Wärme-Abfuhr

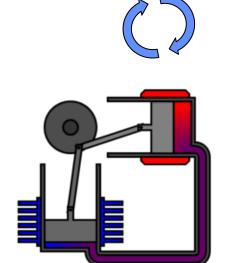
perfekte Kälte-Maschine

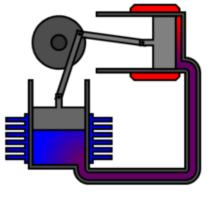
$$\Delta S = -\frac{Q_L}{T_L} + \frac{Q_H}{T_H} \ge 0 \qquad \Delta S = -\frac{\Delta Q}{T_L} + \frac{\Delta Q}{T_H} < 0$$

Q_H: Wärme-**Zu**fuhr in Bad mit T_H

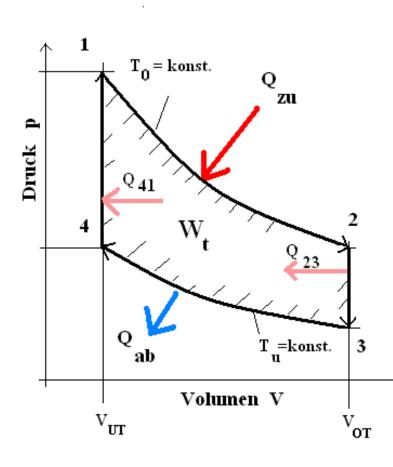

Q_H: Wärme-**Ab**fuhr aus Bad mit T_H

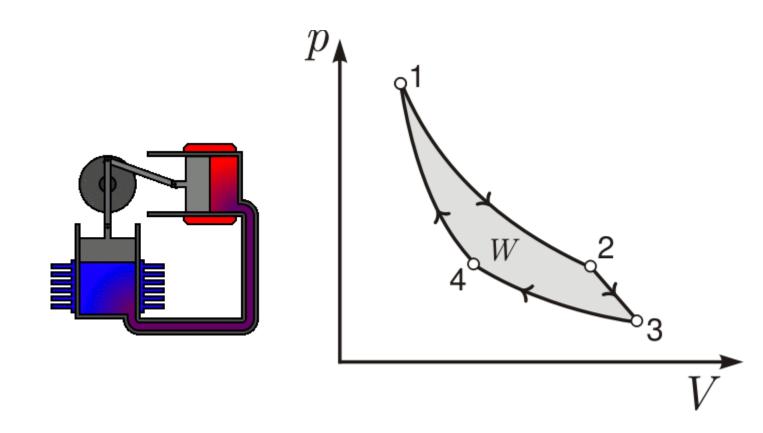

Q₁: Wärme-**Zu**fuhr in Bad mit T₁


Stirlingmotor


<->

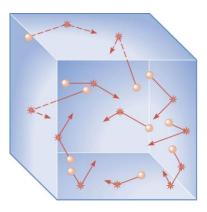
Wärmekraftmachine





Wärmepumpe, Kühlschrank

Kraftwärmemaschine



Kinetische Gastheorie: Zusammenhang zw. makroskopischen & mikroskopischen Größen (z.B. Wärme ⇔ kinetische Energie der Moleküle)

Zustandsgleichung des idealen Gases:

$$\frac{p \cdot V = N \cdot k_B \cdot T}{\text{exp. Beobachtung}}$$

- N: Anzahl der eingeschlossenen Moleküle
- $k_B = 1.38 \cdot 10^{-23} \text{ J/K}$ (Boltzmann-Konstante)

andere Schreibweise: $p \cdot V = n \cdot R \cdot T$ $n = N/N_A$: Stoffmenge, Anzahl der eingeschlossenen <u>Mole</u> eines Moleküls

 $R = k_B N_A = 8.31 J / (K mol)$ (allgemeine Gaskonstante) $N_A = 6.02 \cdot 10^{23} / mol$ (Avogadro-Konstante)

Ideales Gas:

- wechselwirkungsfreies Gas, lediglich Punktkontakt beim Stoß
- Atome ohne Ausdehnung
- nur die Anzahl der Stoßteilchen geht in die ideale Gasgleichung ein
- → gute Beschreibung aller realen Gase bei geringer Dichte

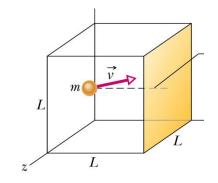
Ideales Gas aus mehreren Komponenten mit den Teilchenzahlen N₁, N₂, ...:

(nur die Anzahl ist wichtig, nicht die Art der Komponenten)

$$p \cdot V = k_B \cdot T \cdot \left(N_1 + N_2 + \ldots\right) = k_B \cdot T \cdot \sum_i N_i \qquad \qquad \text{zB CO_2, O_2, N_2, ...}$$

Zerlegung des Produktes p-V entsprechend der physikalischen Situation:

Einführung von Partialdrücken oder Partialvolumina für jede Komponente

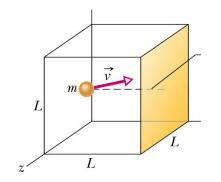

$$p = \sum_{i} p_{i}$$

$$V = \sum_{i} V_{i}$$
 (Komponenten getrennt)

$$p_i \cdot V = k_B \cdot T \cdot N_i$$

$$\Rightarrow \frac{p_i}{p_j} = \frac{N_i}{N_j}$$

Brownsche Molekularbewegung



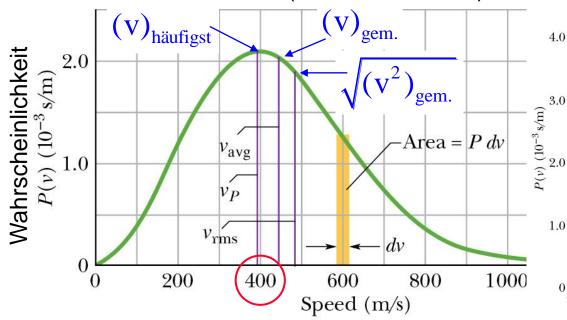
Kinetische Gastheorie: $p \cdot V = \frac{1}{3} N \cdot m \cdot (v^2)_{gemittelt}$

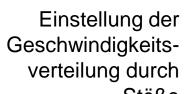
makroskop. Druck ⇔ (mikroskop. Geschwindigkeit)²

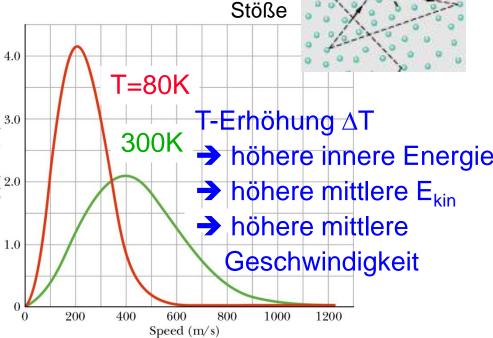
- Druck entsteht durch elastische Stöße der Gasteilchen (Impuls mv) mit der Behälterwand.
- Häufigkeit der Stöße ~ v

Brownsche Molekularbewegung

Brownsche Molekularbewegung

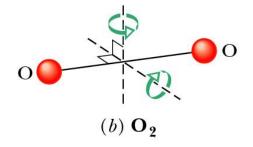

Kinetische Gastheorie: $p \cdot V = \frac{1}{3} N \cdot m \cdot (v^2)_{gemittelt}$

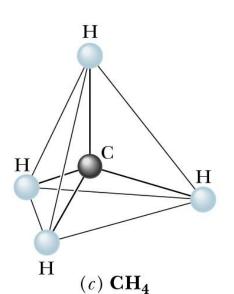

makroskop. Druck ⇔ (mikroskop. Geschwindigkeit)²


- Druck entsteht durch elastische Stöße der Gasteilchen (Impuls mv) mit der Behälterwand.
- Häufigkeit der Stöße ~ v

Maxwellsche Geschwindigkeitsverteilung

in einem idealen Gas (z. B. Sauerstoff):





(a) **He**

Klassifizierung von Molekülen nach thermodynamischen Freiheitsgraden

(= unabhängigen Möglichkeiten des Moleküls, Energie zu speichern)

	Translation	Rotation	Vibration
He	$3 (v_x, v_y, v_z)$	0	0
O_2	3	2	$2(E_{pot}, E_{kin})$
CH ₄	3	3	·

Gleichverteilungssatz:

Jeder Freiheitsgrad speichert im Mittel die Energie ½ k_BT; die Summe macht die innere Energie des Gases aus.

Bsp.: innere Energie eines einatomigen Gases (nur Transl.)

$$U = \frac{3}{2} N \cdot k_B T$$

Bsp.: molare Wärmekapazität eines einatomigen Gases (für V=const)

$$c_{\text{molar}} = \frac{\Delta Q}{n \Delta T} = \frac{3 \cdot \frac{1}{2} k_{\text{B}} T \cdot N}{(N/N_{\text{A}}) \cdot T} = \frac{3}{2} N_{\text{A}} k_{\text{B}} = \frac{3}{2} R = 12.5 \text{ J/mol K}$$