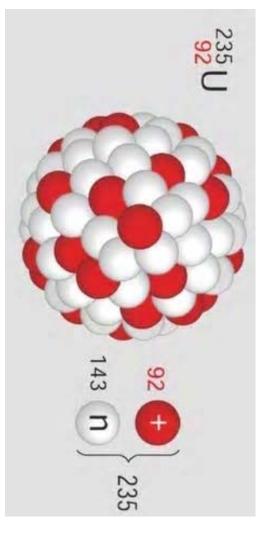
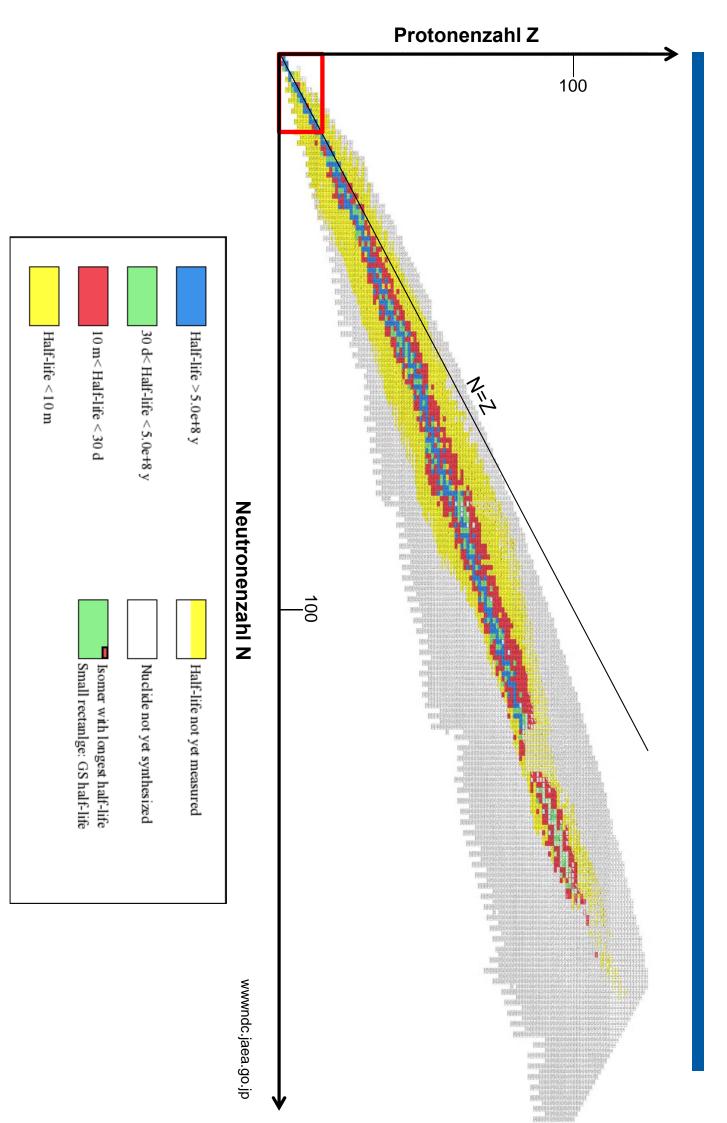

7 Kerne, Atome, Moleküle, Festkörper

Aufbau des Atoms

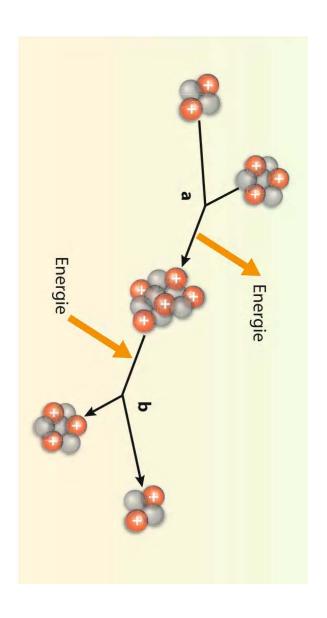

www.wikipedia.de

Particle	Relative Mass	Relative Charge	Charge / C	Mass / kg
Protons	_	+	+ 1.6 x10 ⁻¹⁹	1.67 x10 ⁻²⁷
Neutrons	_	neutral	0	1.67 x10 ⁻²⁷
Electrons 0.0005	0.0005	-	-1.6 x10 ⁻¹⁹	9.11 x10 ⁻³¹


physicnet.co.uk

Grundkraft	wichtigste Eigenschaft	relative Stärke	Reichweite
starke Kernkraft	Nukleonenbindung	1	10 ⁻¹⁵ m
elektromagnetische elektrische Ladung Kraft	elektrische Ladung	10-2	unbegrenzt
schwache Kernkraft Nukleonen- umwandlun	Nukleonen- umwandlung	10-13	10 ⁻¹⁸ m
Gravitation	Masse	10-38	unbegrenzt

Nuklidkarte

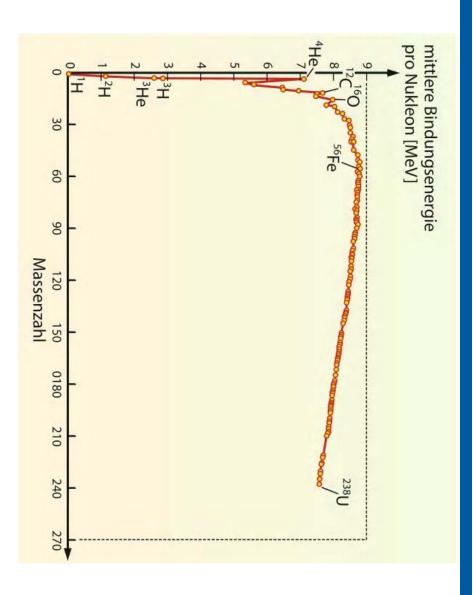

Protonenzahl Z

				Pr	otor	ienz	anı					_
1 0	3	4	5	6	7	∞	9	10	11	12	13	1
H 1	1											
He 3),000137 H 2 0,0115 n 1 10,23m					1							
H 3 1232y				C 8								
	7.59	Be 7 53.22d	B 8 0.77s	C 9 0.1265s								
He 6 0.8067s	Li 7 92.41	Be 8 6.7e-17s	B 9 8.5e-19s	C 10 19.31s	N 11 0.09s	0 12						
	Li 8 0.8399s	Be 9	19.9	C 11 20.39m	N 12 0.011s	O 13 0.00858s						
He 8 0.1191s	Li 9 0.1783s	Be 10 1.51e+06y	B 11	98.93 7	N 13 9.965m	O 14 1.177m	F 15 0.14s	Ne 16				
		Be 11 13.81s	B 12 0.0202s	C 13	N 14 99.632	O 15 2.037m	F 16 1e-19s	Ne 17 0.1092s	Na 18 0.0347s	Mg 19 4e-12s		
	Li 11 0.0087s	Be 12 0.0213s	B 13 0.01736s	C 14 5700y	N 15	99.757	F 17 1.075m	Ne 18 1.666s	Na 19 0.435s	Mg 20 0.0908s	Al 21 0.0428s	0.029s
			B 14 0.0125s	C 15 2449s	N 16 7.13s	O 17 0.038	F 18	Ne 19 17.22s	Na 20 0.4479s	Mg 21 0.122s	Al 22 0.0911s	0.0423s
		Be 14 0.00484s	B 15 0.0105s	C 16 0.747s	N 17 4.173s	O 18 0.205	F 19	Ne 20 90.48	Na 21 22.49s	Mg 22 3.875s	Al 23 0.446s	0.14s
				C 17 0.193s	N 18	O 19 26.88s	F 20 11.16s	Ne 21 0.27	Na 22 2.603y	Mg 23 11.32s	Al 24 2.053s	0.22s
			B 17 0.00508s	C 18 0.092s	N 19 0.271s	O 20 13.51s	F 21 4.158s	Ne 22 9.25	Na 23	Mg 24	Al 25 7.183s	2.234s
				C 19 0.049s	N 20 0.13s	O 21 3.42s	F 22 4.23s	Ne 23 37.24s	Na 24 15h	Mg 25	Al 26 2.17e+05y	4.16s
			8 0.00	0.0	0.0 Z	20	F 2.	Ne 3.3	Na 59	Mg	AI	92.2

Nuklidkarte

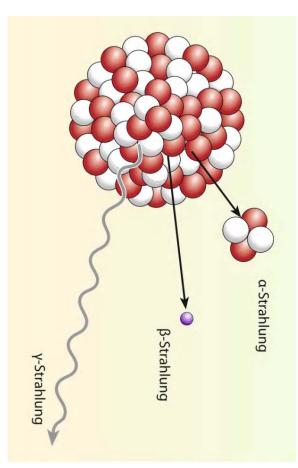
Neutronenzahl N

Kernspaltung, Kernfusion



$$E = mc^2$$

dabei wieder in Masse überführt (b). abgestrahlt (a). Um den Kern wieder zu spalten, muss diese Bindungsenergie überwunden werden. Die zugeführte Energie wird ein Teil der Nukleonenmasse in Energie umgewandelt und Bei der Fusion leichter Atomkerne zu einem schwereren Kern wird


muss Energie zugeführt werden, bei der Spaltung wird Energie frei. Bei schweren Kernen ist die Energiebilanz umgekehrt: Zur Fusion

Kernspaltung, Kernfusion

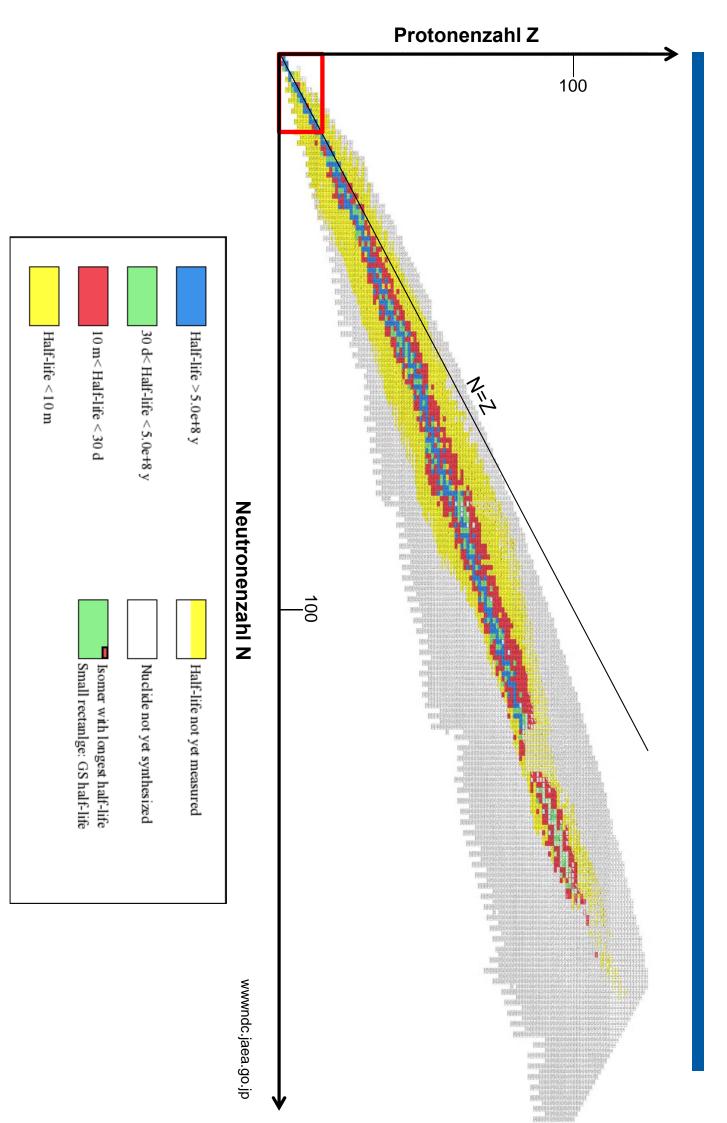
wegen des Massendefekts Energie frei, schwerere Masse haben. Bei der Fusion leichterer Nuklide wird Elemente geben dagegen bei der Spaltung Energie ab. Nukleonen, die daher in diesem Element die geringste In Eisenatomen wirkt die größte Bindungsenergie auf die

Radioaktiver Zerfall

α-Zerfall:

- $_{\rm Z}^{\rm A}{
 m X}
 ightarrow _{\rm Z-2}^{\rm A-4}{
 m Y} + _{\rm 2}^{\rm 4}{
 m He} + \Delta{
 m E}$
- Abgabe von He-Kernen

β ⁻-Zerfall:

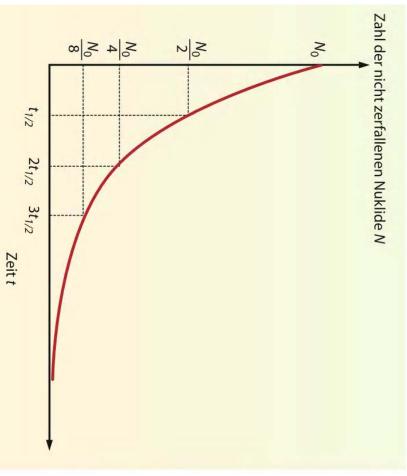

- $_{z}^{A}X \rightarrow _{Z+1}^{A}Y + e^{-} + \overline{\nu}_{e} + \Delta E$
- Abgabe von Elektronen(β+: Positronen)

γ-Zerfall:

- ${}_{Z}^{A}X^{*} \rightarrow {}_{Z}^{A}X + \gamma$
- Abgabe von elektromagnetischer Strahlung (Röntgen)

γ-Emission	β+-Zerfall	βZerfall	α-Zerfall	Zerfallstyp
Relaxation des Kerns	Protonenüberschuss	Neutronenüberschuss	Verhältnis Protonen/ Neutronen zu groß	Ursache
keine Änderung	1	±.	-2	Ordnungszahl
keine Änderung	keine Änderung	keine Änderung	4	Massenzahl
elektromagnetische 0,1 bis 20 MeV γ-Strahlung	Positron	Elektron	Heliumkerne	Strahlung
0,1 bis 20 MeV	kontinuierlich, fast 0 bis 14 MeV	kontinuierlich, fast 0 bis 14 MeV	diskret, 1,5 bis 10 MeV	Energie

Nuklidkarte



5.4 (10)

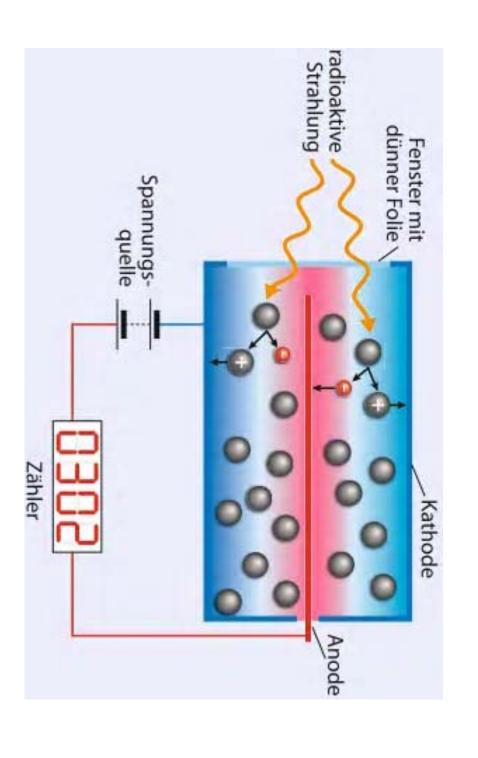
Zerfallsreihe ²³²Th

P+203	Au204 39.8s	Hg205 5.14m	4.202m	T1206	Pb207	Bi208 3.68e+05y	102y	Po209	At210 8.1h	14.6h	2011	Fr212	Ra213 274m	8.2s	Ac214	1.2s	Th215	Pa216 0.167s	0.016s	U 217	Np218 1.53s	0.776s	Pn210	Am220	0.0462s	Cm221	Bk222 0.0569s	0.000175
P1204	Au205	Hg206 8.32m	4.77m	71207	Pb208	Bi209	138.4d	Po210	At211 7.214h	Kn212 23.9m	D-010	Fr213	Ra214 2.46s	0.17s	Ac215	0.026s	Th216	Pa217 0.0036s	0.00051s	U 218	Np219 4.38s	0.0685s	D11770	Am221	0.0103s	Cm222	Bk223 0.0229s	0.002048
P1705	Au206 1.45s	Hg207 2.9m	3.053m	5, 255h	Pb209	Bi210 3.04e+06y	25.2s	Po211	At212 0314s	0.025s	0.0000	Fr214	Ra215 0.00155s	0.000441s	Ac216	0.000251s	Th217	Pa218 0.000113s	8e-05s	U 219	Np220 0.000123s	5.94e-06s	P11771	Am222	1.46e-06s	Cm223	Bk224 3.97e-06s	0.246-078
D1706	Au207	Hg208 41m	2.2m	71200	Pb210	Bi211 2.14m	45.1s	Po212	At213 1.25e-07s	Kn214 2.7e-07s	0.00-003	Fr215	Ra216 1.82e-07s	6.9e-08s	Ac217	1.17e-07s	Th218	Pa219 5.3e-08s	8.75e-09s	U 220	Np221 1.81 e-08s	1.37e-09s	Pinon	Am223	3.02s	Cm224	Bk225 1.99e-09s	7.71E-00S
P+207	Au208 0.92s	Hg209 35s	1.3m	50.lm	Pb211	Bi212	4.2e-06s	Po213	At214 5.58e-07s	Kf1213 2.3e-06s	D=216	Fr216	Ra217 1.6e-06s	1.08e-06s	Ac218	1.05e-06s	Th219	Pa220 7.8e-07s	4.63e-07s	U 221	Np222 9.57e-07s	1.27e-07s	P11773	Am224	2.86e-08s	Cm225	Bk226 1.49s	1.100
P+208	Au209 0.886s	Hg210 3.47s	5.38s	T10.04h	Pb212	Bi213 45.59m	0.0001643	Po214	At215 0.0001s	Kn210 4.5e-05s	D-016	Fr217	Ra218 2.52e-05s	1.18e-05s	Ac219	9.7e-06s	Th>>>0	Pa221 5.9e-06s	1e-06s	U 222	Np223 3.78e-06s	5.33e-07s	P11774	Am225	4.05s	Cm226	Bk227 1.83s	1.20E-148
Pt200	Au210 0.623s	Hg211 2.16s	2.38s	T10.2m	r6213	Bi214	0.001781s	Po215	At216 0.0003s	Kn21/ 0.00054s	D.0223	Fr218	Ra219 0.01s	0.0264s	Ac220	0.00173s	Th>> 1	Pa222 0.0029s	1.8e-05s	U 223	Np224 0.000333s	S	P11775	Am226	7.21e-06s	Cm227	Bk228 5.88e-08s	C+3C-173
Pt210	Au211 0.602s	Hg212 1.8s	2.33s	20.8m	Pb214	Bi215 7.7m	0.145s	Po216	At217 0.0323s	0.035s	0.025	Fr219	Ra220 0.018s	0.052s	Ac221	0.002237s	Th>>>	Pa223 0.0051s	0.0007s	U 224	Np225 0.000817s	0.000134s	P11226	Am227	4.62e-08s	Cm228	Bk229 2.08e-08s	1.700-113
P+211	Au212 0376s	Hg213 1.28s	11214 1.21s	30s	Pb215	Bi216 2.25m	1.46s	F0217	At21 6	3.96s	D-210	Fr220	Ra221 28s	1.05m	Ac222	0.6s	Th>>>	Pa224 0.79s	0.061s	U 225	Np226 0.035s	0.0117s	P11777	Am228	2.31e-05s	Cm229	Bk230 1.76e-08s	1.316-113
Pt212	Au213 0.33s	Hg214 1.02s	1.15s	T1215	Pb216	Bi217 1.55m	3.098m	Po218	At219 56s	55.6s	1000	Fr221	Ra222 36.17s	2.1m	Ac223	1.05s	Th>>> 4	Pa225 1.7s	0.35s	U 226	Np227 0.51s	1.15	P11778	Am229	6.34e-08s	Cm230	Bk231 4.48e-07s	1.00-1.38
Pf213	Au214 0.244s	Hg215 0.728s	0.689s	248	Pb217	Bi218 33s	1.89m	Po219	At220 3.71m	25.7m	1000	Frozz	Ra 223 11.44d	2.78h	Ac224	8.72m	Thoos	Pa226	1.1m	U 227	Np228 1.023m	2m	P11779	Am230	0.00368s	Cm231		2.70E-005
Pt214	Au215 0.208s	Hg216 0.58s	0.629s	10./s	Pb218	Bi219 7.49s	1.51m	Po220	At221 23m	3.824d	D-000	Fr223	Ra224	10d	Ac225	30.57m	Th>>>6	Pa227 38.3m	9.1m	U 228	Np229 4m	1.7m	P11730	Am231	2.55e-05s	Cm232	Bk233 0.000873s	בייטטב-זחס מיהטטטס
P1014	Au216 0.16s	Hg217 0.403s	0.406s	21.5	Pb219	Bi220 3.12s	26.2s	Po221	At222 54s	24.3m	0.0000	Fr224	Ka225 14.9d	224d	Acro	18.68d	Th>>>7	Pa228 22h	58m	U 229	Np230 4.6m	8.6m	P11731	Am232	3.04s	Cm233	Bk234 0.0807s	0.0001048
P1716	Au217 0.161s	Hg218 0389s	0.407s	2.088	Pb220	Bi 221 3.75s	28.6s	Po222	At223 50s	1.783h	D-004	Fr225	Ra226 1600y	21.77y	Ac227	1.912y	Th>>>8	Pa229	20.8d	U 230	Np231 48.8m	34.lm	Piijza	Am233	\51s	Cm234	Bk235 0.479s	500-aC'1
Pt217	Au218 0.133s	Hg219 0.332s	0.351s	1.248	Pb221	Bi222 1.49s	9.62s	Po223	At224 8.58s	4.66m	1005	Fr226	Ra 227 42.2m	6.15h	.xc228		Th>>>9	Pa230 17.4d	4.2d	U 231	Np232 14.7m	20.9m	Ph/233	Am234	1.13m	Cm235	Bk236 15.5s	2.13
Pt218	Au219 0.116s	Hg220 0.277s	0361s	1.118	Pb222	Bi223 1.53s	8.23s	Po224	At225 11.7s	7.4m	111.47	Fr227	Ra228 5.75y	1.045h	Ac229	7.54e+04y	Th230	Pa231 3.28e+04y	68.9y	U 232	Np233 36.2m	8.8h	Pn734	Am235	56.6s	Cm236	Bk237 32.4s	6170'0
Pf219	Au220 0.0899s	Hg221 0.204s	0.238s	0.0038	Pb223	Bi224 0.767s	3.63s	Po225	At226 4.17s	20.8s	200	Fr228	Ka 229 4m	2.63m	Ac226	1.063 d	Th231	Pa232	1.59e+05y	U 233	Np234 4.4d	25.3m	P11735	Am236	3.97m	Cm237	Bk238 2.4m	378
D1770	Au221 0.0785s	Hg222 0.174s	0.221s	2886.0	Pb224	Bi225 0.743s	2.61s	Po226	At227 3.83s	1.083m	0-220	Fr229	Ra230 1.55h	7.5m	Ac231	100	Thoso	Pa233 26.98d	0.0055	U 234	Np235 1.085y	2.858y	P11736	Am237	2.4h	Cm238	Bk239 1.51m	JJ.US
Pt771	Au222 0.0616s	Hg223 0.132s	0.151s	11227 S8650	Pb225	Bi226 0.461s	1.6s	Po227	At228 1.82s	13.2s	17.18	Fr230	Ra231 1.717m	1.983m	Ac232	22.3m	Thosa	Pa234 6.7h	0.72	U 235	Np236 1.54e+05y	45.2d	P11737	Am238	2.9h	Cm239	Bk240 4.8m	2.7011

Halbwertszeit

anfänglichen Kerne zerfallen. der Zeit t ab. Unabhängig davon, wann wir die übrig gebliebenen Kerne N exponentiell mit Messung starten, ist dadurch immer nach Beim radioaktiven Zerfall nimmt die Zahl der Ablauf der Halbwertszeit t_{1/2} die Hälfte der

$$N = N_0 \cdot e^{-\lambda t}$$


$$N = N_0 \cdot e^{-\lambda t}$$

$$V(x_1) = \lambda_0 \cdot e^{-\lambda t}$$

$$V(x_2) = \lambda_0 \cdot e^{-\lambda t}$$

$$V(x_3) = \lambda_0 \cdot e^{-\lambda t}$$

Nachweis von Radioaktivität

Protonenzahl Z

				Pr	otor	ienz	anı					_
1 0	3	4	5	6	7	∞	9	10	11	12	13	1
H 1	1											
He 3),000137 H 2 0,0115 n 1 10,23m					1							
H 3 1232y				C 8								
	7.59	Be 7 53.22d	B 8 0.77s	C 9 0.1265s								
He 6 0.8067s	Li 7 92.41	Be 8 6.7e-17s	B 9 8.5e-19s	C 10 19.31s	N 11 0.09s	0 12						
	Li 8 0.8399s	Be 9	19.9	C 11 20.39m	N 12 0.011s	O 13 0.00858s						
He 8 0.1191s	Li 9 0.1783s	Be 10 1.51e+06y	B 11	98.93 7	N 13 9.965m	O 14 1.177m	F 15 0.14s	Ne 16				
		Be 11 13.81s	B 12 0.0202s	C 13	N 14 99.632	O 15 2.037m	F 16 1e-19s	Ne 17 0.1092s	Na 18 0.0347s	Mg 19 4e-12s		
	Li 11 0.0087s	Be 12 0.0213s	B 13 0.01736s	C 14 5700y	N 15	99.757	F 17 1.075m	Ne 18 1.666s	Na 19 0.435s	Mg 20 0.0908s	Al 21 0.0428s	0.029s
			B 14 0.0125s	C 15 2449s	N 16 7.13s	O 17 0.038	F 18	Ne 19 17.22s	Na 20 0.4479s	Mg 21 0.122s	Al 22 0.0911s	0.0423s
		Be 14 0.00484s	B 15 0.0105s	C 16 0.747s	N 17 4.173s	O 18 0.205	F 19	Ne 20 90.48	Na 21 22.49s	Mg 22 3.875s	Al 23 0.446s	0.14s
				C 17 0.193s	N 18	O 19 26.88s	F 20 11.16s	Ne 21 0.27	Na 22 2.603y	Mg 23 11.32s	Al 24 2.053s	0.22s
			B 17 0.00508s	C 18 0.092s	N 19 0.271s	O 20 13.51s	F 21 4.158s	Ne 22 9.25	Na 23	Mg 24	Al 25 7.183s	2.234s
				C 19 0.049s	N 20 0.13s	O 21 3.42s	F 22 4.23s	Ne 23 37.24s	Na 24 15h	Mg 25	Al 26 2.17e+05y	4.16s
			8 0.00	0.0	0.0 Z	20	F 2.	Ne 3.3	Na 59	Mg	AI	92.2

Nuklidkarte

Neutronenzahl N

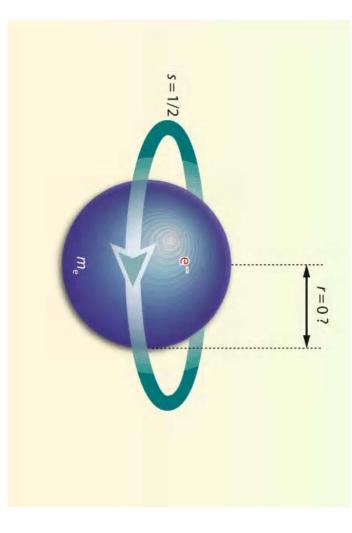
Periodensystem der Elemente

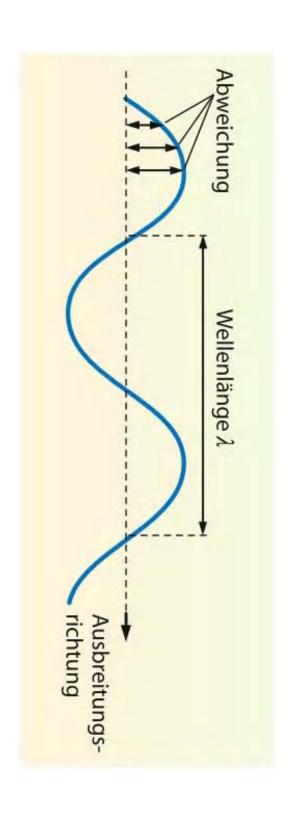
	7	6	5	4	ω	2	1	Group→1 IPeriod
	87 Fr	55 Cs	37 Rb	19 K	11 Na	<u>Γ</u> . ω	ΗL	0 → 1 od
* *	88 Ra	56 Ba	38 Sr	20 Ca	12 Mg	Be		2
57 La 89 Ac	*	*	39	21 Sc				ω
58 Ce Th	104 Rf	72 Hf	40 Zr	22 Ti				4
59 Pr 91 Pa	105 Db	73 Ta	41 Nb	23				σ
92 U	106 Sg	74 W	42 Mo	24 Cr				6
61 Pm Np	107 Bh	75 Re	43 Tc	25 Mn				7
62 Sm 94 Pu	108 Hs	76 0s	44 Ru	26 Fe				œ
63 Eu Am	109 Mt	77 Ir	45 Rh	27 Co				9
64 Gd Cm	110 Ds	78 Pt	46 Pd	28 Ni				10
65 Bk	111 Rg	79 Au	47 Ag	29 Cu				11
66 Dy Cf	112 Cn	80 Hg	48 Cd	30 Zn				12
67 Ho Es	113 Uut	⊐ 81	49 In	31 Ga	≥13	85		13
68 Er 100	114 FI	82 Pb	50 Sn	32 Ge	14 Si	೧๑		14
69 Tm 101 Md	115 Uup	B: 83	51 Sb	33 As	15 P	ZV		15
70 Yb	116 Lv	84 Po	52 Te	34 Se	16 S	0 &		16
71 Lu 103	117 Uus	At 85	- 53	35 Br	17 Cl	F 9		17
	118 Uuo	R ₀	Xe Xe	주36	18 Ar	10 Ne	He	18

Periodensystem der Elemente

		7	6	G	4	ω	2	1	Group →1 Period
		87 Fr	55 Cs	37 Rb	19 K	11 Na	<u>⊏</u> .ω	ΗL	^d ↓
* *	*	88 Ra	56 Ba	38 Sr	20 Ca	12 Mg	4 Be		2
89 Ac	57 La	*	*	¥ 39	21 Sc				ω
90 Th	58 Ce	104 Rf	72 Hf	40 Zr	22 Ti				4
91 Pa	59 Pr	105 Db	73 Ta	41 Nb	<23			Bio	ъ
92 U	Nd 00	106 Sg	74 W	42 Mo	24 Cr				6
93 Np	61 Pm	107 Bh	75 Re	43 Tc	25 Mn				7
94 Pu	62 Sm	108 Hs	76 0s	44 Ru	26 Fe				∞
95 Am	63 Eu	109 Mt	77 r	45 Rh	27 Co				9
96 Cm	64 Gd	110 Ds	78 Pt	46 Pd	28 N:				10
97 Bk	65 Tb	111 Rg	79 Au	47 Ag	29 Cu				11
98 Cf	66 Dy	112 Cn	80 Hg	48 Cd	30 Zn				12
99 Es	67 Ho	113 Uut	±81	49 In	31 Ga	<u>1</u> 3	ш ഗ		13
100 Fm	68 Er	114 FI	82 Pb	50 Sn	32 Ge	14 Si	೧၈		14
101 Md	69 Tm	115 Uup	B: 83	51 Sb	33 As	15 P	ZΝ		15
102 No	70 Yb	116 Lv	84 Po	52 Te	34 Se	16 S	0 ∞		16
103 Lr	71 Lu	117 Uus	85 At	53 -	35 Br	17 Cl	F 9		17
		118 Uuo	86 Rn	54 Xe	<u> </u>	18 Ar	10 Ne	He He	18

Elektron

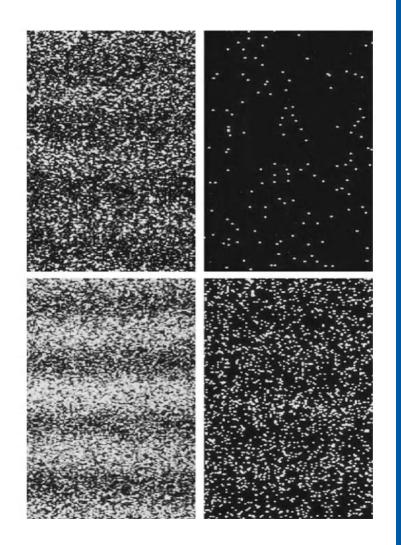



Tabelle 2.1 Daten des Elektrons

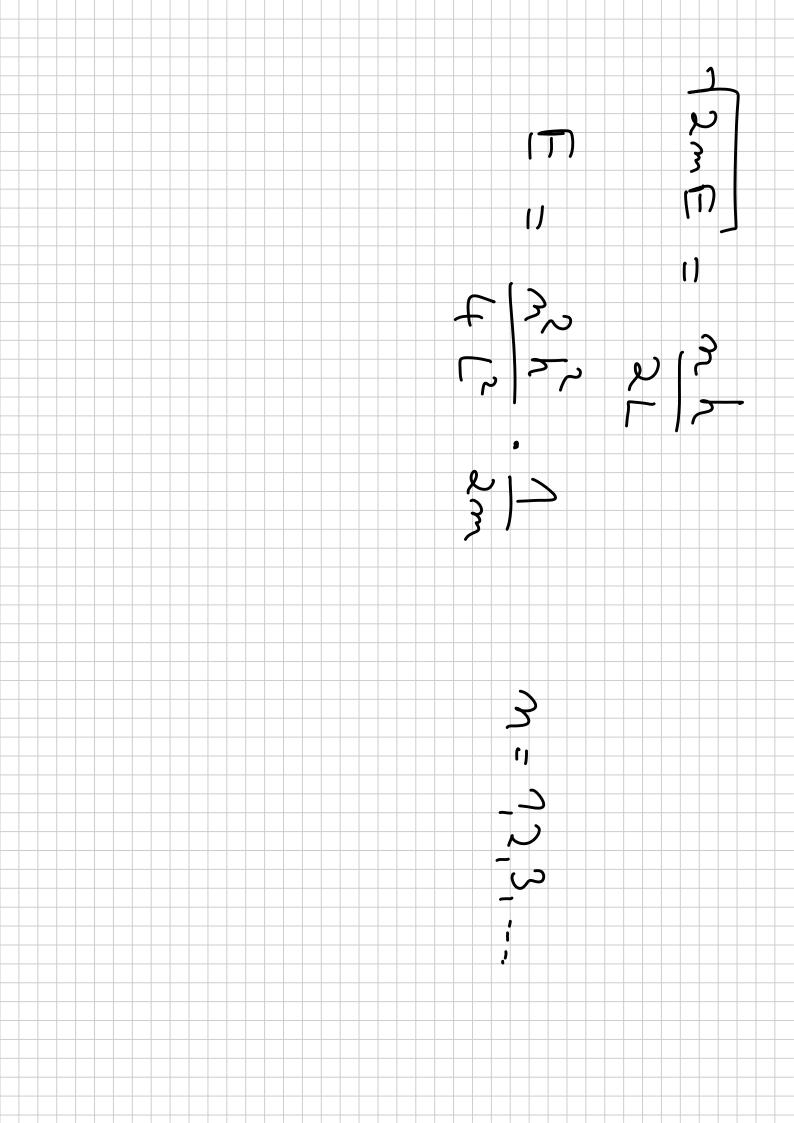
Lebensdauer	8
Ladung	−1 (−1,602 · 10 ^{−19} C)
Spin	+/-1/2·X
Masse	9,1 · 10 ⁻³¹ kg
Durchmesser	unbekannt

Plank sch Wirk uz s grantun $\hbar = \frac{h}{2\pi}$ = 1,054571726(47)·10⁻³⁴ Js = 6,58211928(15)·10⁻¹⁶ eVs

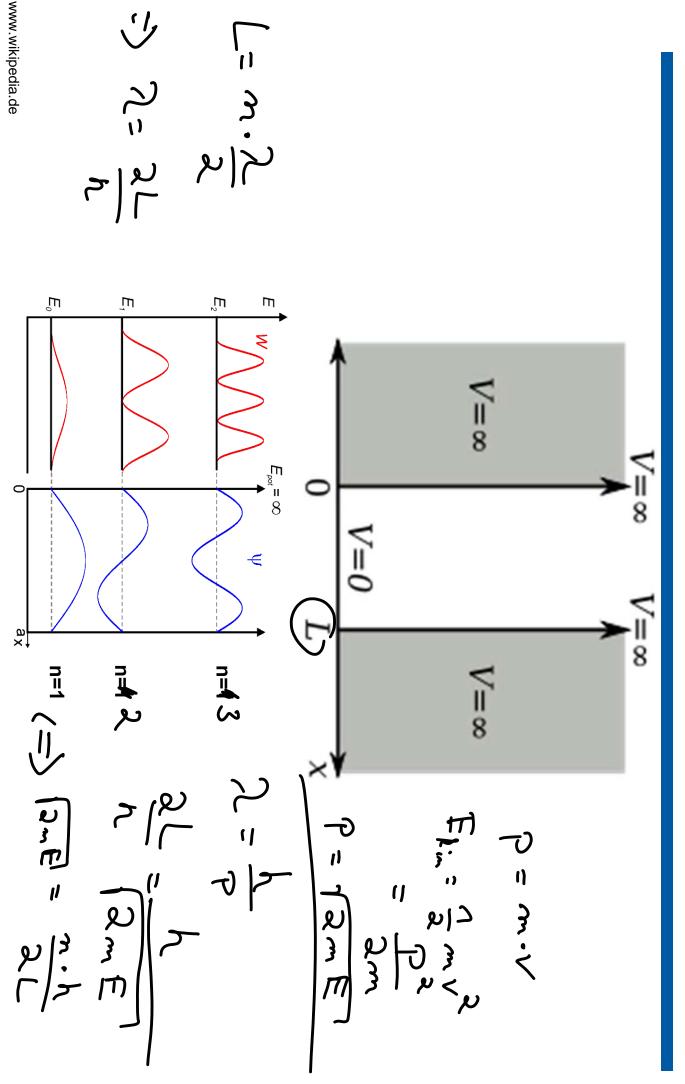
Elektron als Welle

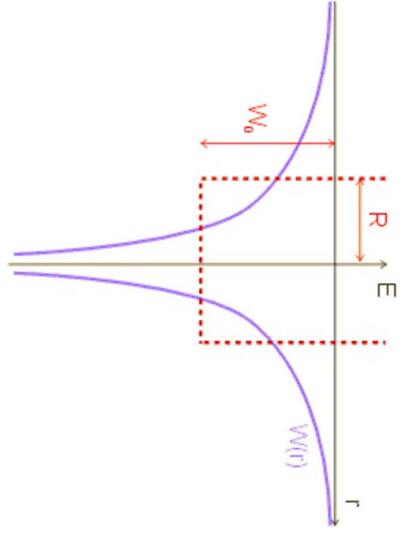

de Broglie:
$$\lambda = rac{h}{n}$$

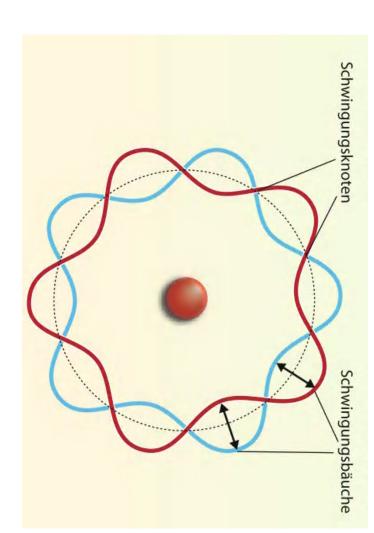
Wahrscheinlichkeitsdichte



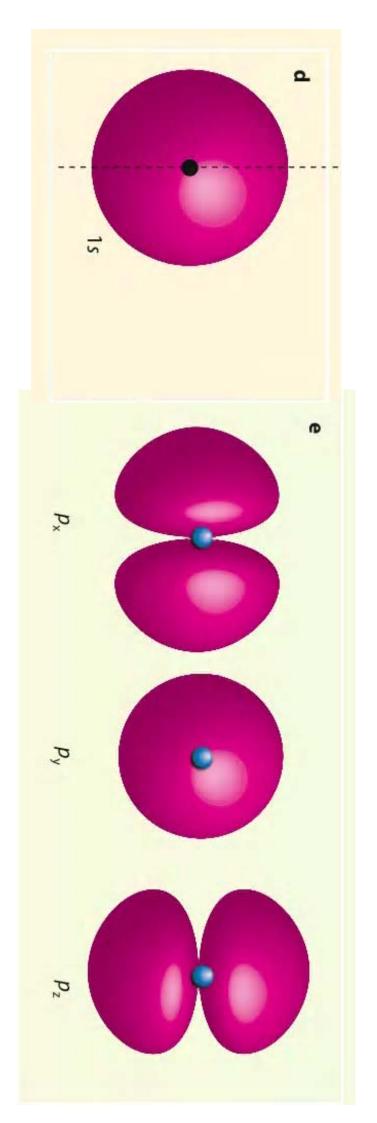
sehr komplexe Formen für die Orbitale genannten Räume, in denen das am größten, während die Chance an den Schwingungsknoten gleich Beschreibt die Wellenfunktion eine Sinuskurve, liefert uns ihr Quadrat die Wahrscheinlichkeitdichte als Maß dafür, das Elektron an dem Elektron mit 90-prozentiger Wahrscheinlichkeit anzutreffen ist. jeweiligen Punkt zu finden. Im Bereich der Schwingungsbäuche ist sie null ist. Für dreidimensionale Wellenfunktionen erhalten wir teilweise


Doppelspaltexperiment mit Elektronen


Spalte tretenden Elektronen ist – hier sind es 10, 100, 3000 bzw. 70 000 zeigen umso deutlichere Interferenzstreifen, je höher die Anzahl der durch die Teilchennatur des Elektrons, das mit dem Detektor Energie austauscht. Wellennatur des Elektrons. Dagegen demonstriert jeder Punkt am Schirm die Elektronen. Die Maxima und Minima im Interferenzmuster demonstrieren die Interferenzmuster, die durch Elektronen hinter einem Doppelspalt erzeugt werden,



Elektron im Kastenpotenzial



Elektron im Wasserstoff

stehende Welle mit unbewegten Schwingungsknoten und Schwingungsbäuchen mit voller Amplitude. der Wellenlänge auf den Umfang passt. Es entsteht eine Damit sich eine kreisförmige Welle nicht selbst auslöscht, Diese Bedingung ist erfüllt, wenn ein ganzzahliges Vielfaches mussen ihr Anfang und Ende nahtlos ineinander übergehen.

Orbitale

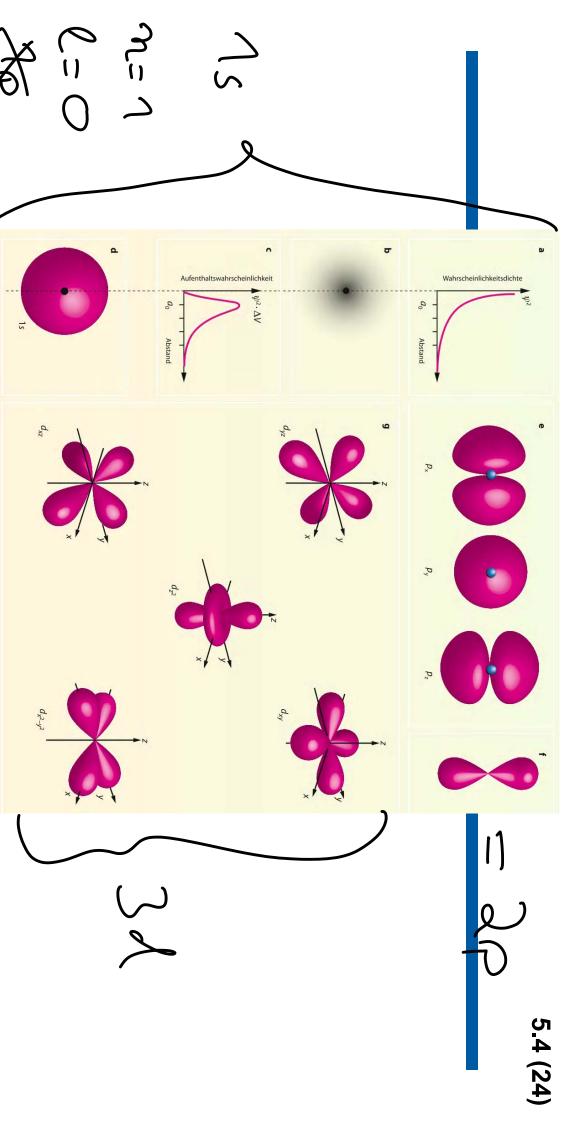
Beschreibung der Wellenfunktion durch Quantenzahlen:

Hauptquantenzahl n:

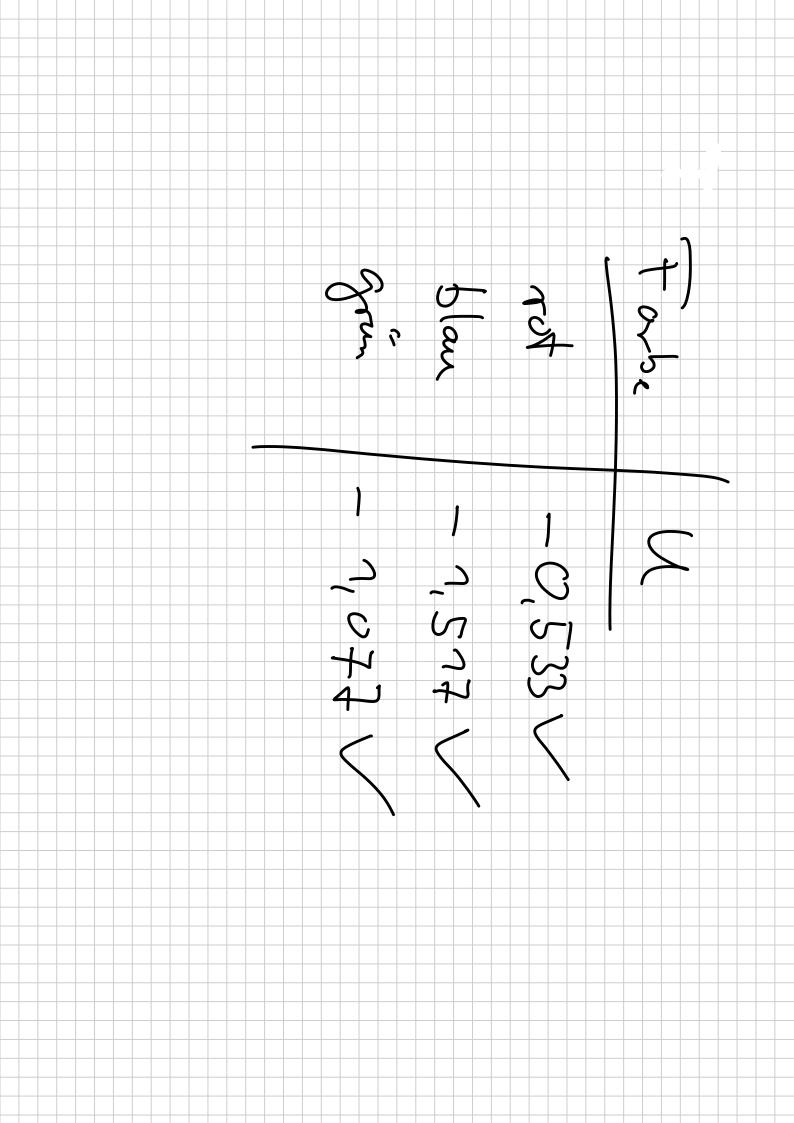
- n = 1, 2, ...
- Orbital erstreck sich umso weiter nach außen, je größer n ist
- maßgeblich für Energie des Elektrons

Nebenquantenzahl I (Drehimpulsquantenzahl)

- I=0,..., (n-1) übliche Bezeichnung durch Buchstaben:
- S:|=0
- p: <u>I=1</u>
- f: |=3
- bestimmt die Form der Orbitale
- kleiner Einfluß auf Energie des Elektrons


magnetische Quantenzahl m

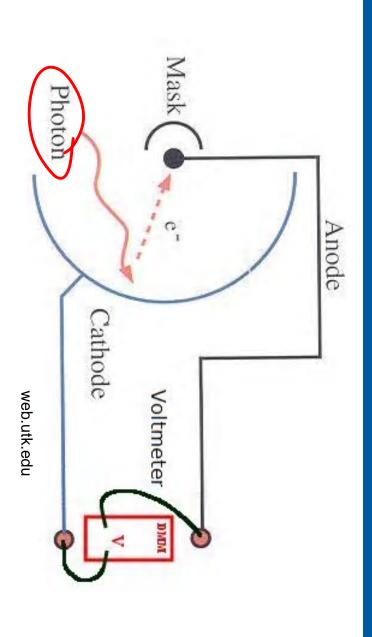
- m=-I, -I+1, ..., 0, ... (I-1),
- bestimmt Ausrichtung des Orbitals

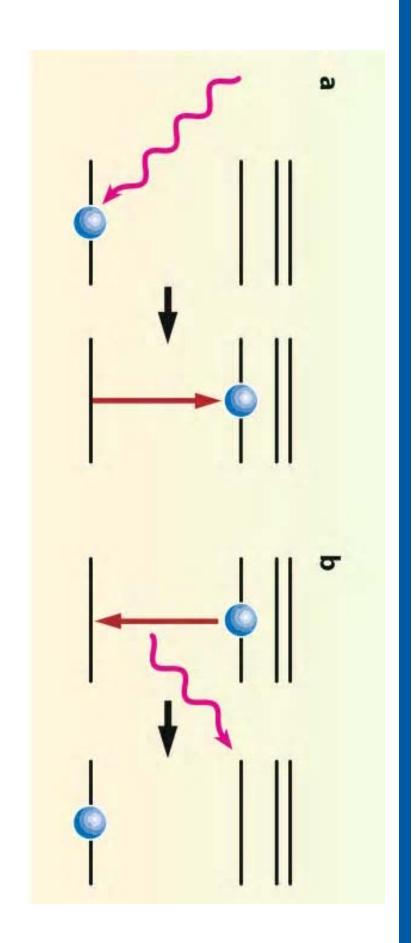

Spinquantenzahl s

- s=-1/2, +1/2
- Eigendrehsinn des Elektrons

(*n, I, m* und *s*) übereinstimmen. zwei Elektronen in allen vier Quantenzahlen Pauli-Prinzip: In einem Atom dürfen keine

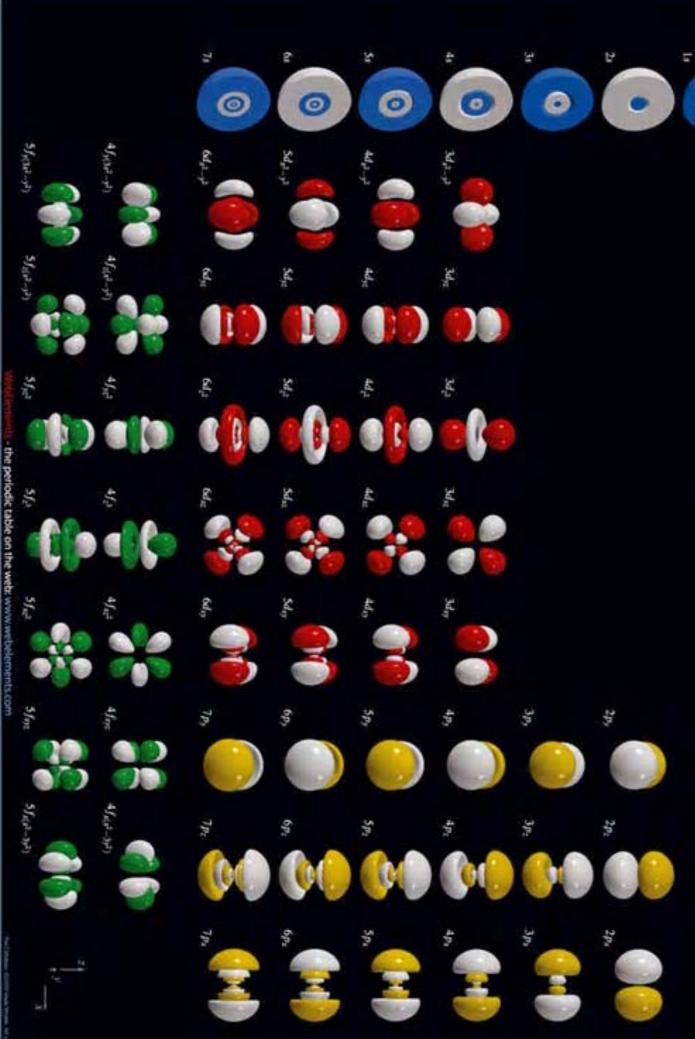
zu, erreicht beim Bohr'schen Radius a₀ ein Maximum und nimmt dann steil ab (c). Zur bildlichen Darstellung von Orbitalen wird Orbitale sind kreuzförmig und ordnen sich in den Ebenen zwischen den Raumachsen an. Das fünfte d-Orbital ähnelt einer Hantel, die überlappen, werden sie zur Ubersichtlichkeit häufig in einer vereinfachten langgestreckten Variante gezeichnet (f). Vier der fünf dp-Orbitale haben dann die Form dicker Hanteln, die sich entlang einer Raumachse orientieren (e). Weil sie sich gegenseitig meistens die Grenzfläche gezeichnet, innerhalb derer das Elektron mit 90-prozentiger Wahrscheinlichkeit anzutreffen ist (d). Die drei Kugelschale immer größer wird. Dadurch nimmt die Chance, auf das Elektron zu treffen, zunächst mit steigendem Abstand zum Kern Aufenthaltswahrscheinlichkeit verläuft anders als bei der Wahrscheinlichkeitsdichte, weil das Volumen ΔV der betrachteten null zu werden (a). Im Querschnitt erscheint das Orbital wie eine Kugelwolke mit diffusen Rändern (b). Die Kurve der Wahrscheinlichkeitsdichte ist für das Elektron in Kernnähe am größten und fällt nach außen hin exponentiell ab, ohne jemals gleich Die Orbitate des Wasserstoffatoms sind ein gutes Modell für alle Atomorbitale. Am einfachsten ist das 1s-Orbital aufgebaut (a-d). Die im zentralen Bereich von einem Torus umgeben ist (g).


Elektronenkonfiguration


Faustregel

Emissionsspektren

herab, emittiert es die überschüssige Energie als Photon (b). höhere Bahn (a). Fällt es auf eine weiter innen liegende Bahn Ein Elektron, das ein Photon mit der passenden Energie (Wellenlinie) absorbieren kann, springt dadurch auf eine


Periodensystem der Elemente

			7	6	5	4	ω	2	Ц	Group→1 1Period
			87 Fr	55 Cs	37 Rb	19 K	11 Na	<u>Γ</u> .ω	ΗL	od +1
* *	*		88 Ra	56 Ba	38 Sr	20 Ca	12 Mg	4 Be		2
89 Ac	57 La		*	*	¥ 39	21 Sc				ω
90 Th	58 Ce		104 Rf	72 Hf	40 Zr	22 Ti				4
91 Pa	59 Pr		105 Db	73 Ta	41 Nb	2 3				U
92 U	Nd 00	(106 Sg	74 W	42 Mo	24 Cr				6
93 Np	61 Pm		107 Bh	75 Re	43 Tc	25 Mn	65,6	5 4 6 5 5 4	2 2 2 2 2 2	7
94 Pu	62 Sm		108 Hs	76 Os	44 Ru	26 Fe	65,6p,6d	5 4 2	7 7 7 5	∞
95 Am	63 Eu		109 Mt	77 Ir	45 Rh	27 Co	:	57 4 ::		9
96 Cm	64 Gd		110 Ds	78 Pt	46 Pd	28 Ni	:			10
97 Bk	65 Tb		111 Rg	79 Au	47 Ag	29 Cu				11
98 Cf	66 Dy		112 Cn	80 Hg	48 Cd	30 Zn				12
99 Es	67 Ho		113 Uut	±81	49 In	31 Ga	13 A	ш ഗ		13
100 Fm	68 Er		114 FI	82 Pb	50 Sn	32 Ge	14 Si	೧၈		14
101 Md	69 Tm	-	115 Uup	83 B:	51 Sb	33 As	15 P	ZV		15
102 No	70 Yb		116 Lv	84 Po	52 Te	34 Se	16 S	0 ∞		16
103 Lr	71 Lu		117 Uus	85 At	- 53	35 Br	17 Cl	F 9		17
			118 Uuo	86 Rn	Xe Xe	주36	18 Ar	10 Ne	He He	18

The Orbitron gallery of atomic orbitals

