VI Das freie Elektronengas

Um ein einfaches Modell zu erhalten, macht man folgende Annahmen

- (1) Näherung freies Elektron : Keine WW Elektron Ionenrümpfe
- (2) unabhängige Elektronen
- -trotz dieser groben Annahmen, erzielt man gute Resultate (Ohm'sches Gesetz, Wärmeleitfähigkeit)
- -allerdings ist Elektronengas quantenmechanisch zu behandeln
 - (a) Pauli-Prinzip
 - (b) Statistik beschrieben durch die Fermi-Verteilung
- Historie : (1) Drude-Modell == klassische Behandlung des freien Elektronengas (~1900)
 - (2) Sommerfeld-Erweiterung : Übertrag des Pauli-Prinzips auf Elektronengas
 - (1)+(2) Drude-Sommerfeld-Theorie

VI.1 Grundzustand

Volumen L³ mit freien Elektronen : löse das Ein-Elektron-Problem (1+2) und fülle entsprechend dem Pauli Prinzip auf

Grundzustand == Auffüllen entsprechend dem Pauli-Prinzip (das Ein-Elektronen-Bild bleibt in vielen modernen Theorien erhalten)

Wechselwirkungen der Elektronen → Korrelationen; aktueller Gegenstand der FKP Hochtemperatursupraleiter

Magnetismus

Schwere Fermionen

kolossaler Magnetwiderstand

VI.1.1 Eigenzustände

wir beschreiben das Elektron im Kasten durch die Wellenfunktion:

 $\Psi(r)$ und den Spin τ

Schrödingergleichung für ein freies Elektron : U=0

$$H \cdot \Psi(\vec{r}) = \left[-\frac{\hbar}{2m} \nabla^2 \right] \cdot \Psi(\vec{r}) = E \cdot \Psi(\vec{r})$$

Lösungen sind die ebenen Wellen

$$\Psi_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}\vec{r}} \quad (6.2)$$

Mit der Normierung:

$$\int_{V} d^3r \left| \Psi_{\vec{k}}(\vec{r}) \right|^2 = 1 \quad (6.3)$$

Einsetzen von (6.2) in Schrödingergleichung (6.2)

$$E(\vec{k}) = \frac{\hbar^2 k^2}{2m} \quad (6.4)$$

Dispersion

$$\wp = \frac{\hbar}{i} \nabla$$

Ebene Wellen sind auch Eigenzuständes des Impuls

$$\wp(\Psi_{\vec{k}}(\vec{r})) = \frac{\hbar}{i} \nabla \cdot \Psi_{\vec{k}}(\vec{r}) = \hbar k \cdot \Psi_{\vec{k}}(\vec{r}) \quad (6.5)$$

Heisenberg'sche Unschärfe-Relation

$$\Delta x \cdot \Delta p \ge \hbar$$

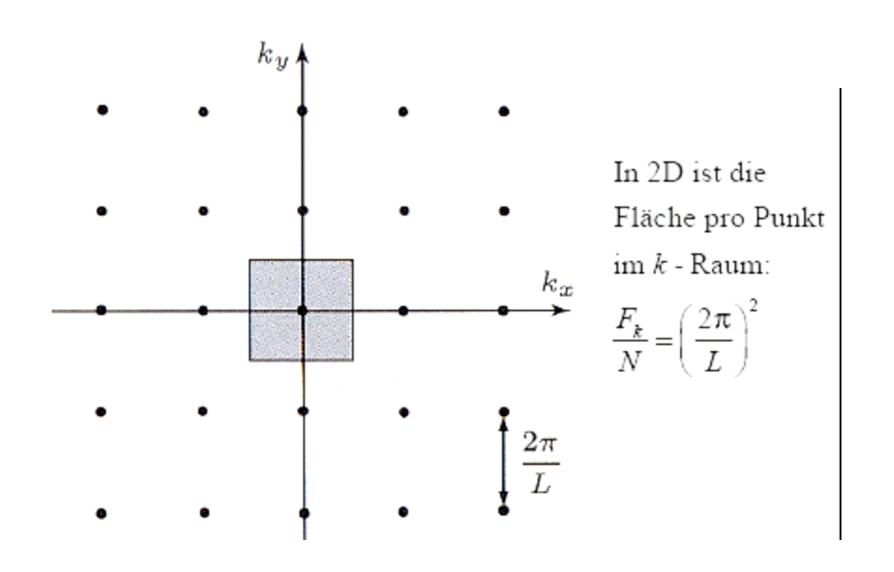
Freies Elektronengas ⇔ delokalisierte Elektronen

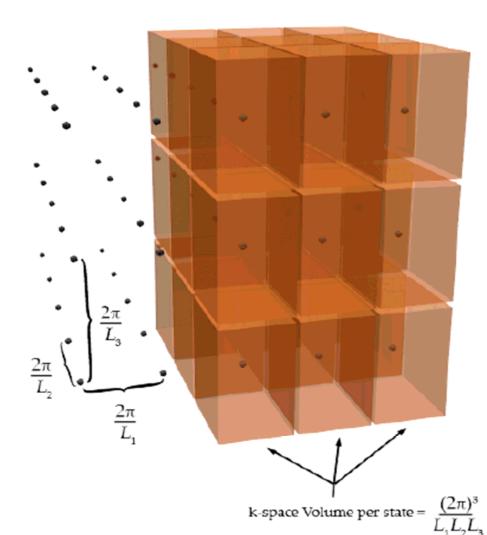
Merke : Eigenzustände $\Psi_k(r)$ sind klassifiziert durch k und den Spin τ

$$\Psi_k(r,\tau) = |k, \tau\rangle$$
 (6.6)
k und τ Quantenzahlen mit $\tau=+1/2$ und $-1/2$

VI.1.2 Randbedingungen

-wie bei den Gitterschwingungen fordern wir Randbedingungen entweder $\Psi_k(r,\tau)$ =0 auf dem Rand oder periodische Randbedingungen (letztere sind vorteilhafter)


$$\Psi_{k}(x,y,z,\tau) = \Psi_{k}(x+L_{s},y+L_{y},z+L_{z},\tau)$$
 (6.7)


Damit sind wieder nur bestimmte k-Vektoren erlaubt

$$k_i = 2\pi/L_i$$
 n mit n ganzzahlig und i=x,y,z (6.8)

ACHTUNG: Im Gegensatz zu den Gitterschwingungen ist **k** nicht auf die erste Brillouin-Zone beschränkt!

zu jedem k-Vektor gibt es 2 Zustände (Spin)

In 3D ist die Fläche pro Punkt im k - Raum:

$$\frac{F_k}{N} = \left(\frac{2\pi}{L}\right)^3$$

In d-Dimensionen wäre die Fläche pro Punkt im k - Raum:

$$\frac{F_k}{N} = \left(\frac{2\pi}{L}\right)^d$$

VI.1.3 Zustandsdichte

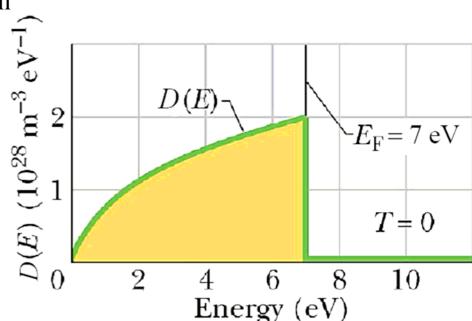
Zustandsdichte = Z(k) = Zahl der Zustände pro Volumen in rez. Raum

$$Z(k) = \frac{2}{\frac{2\pi}{L_{x}} \cdot \frac{2\pi}{L_{y}} \cdot \frac{2\pi}{L_{z}}} = 2 \cdot \frac{V}{(2\pi)^{3}} = \frac{V}{4\pi^{3}} \quad (6.9)$$

Fläche konstanter Energie ist eine Kugel

Zustandsdichte D(E) mit der Dispersion

$$Z(k)d^{3}k = D(E)dE$$


$$\Rightarrow D(E)dE = \frac{V}{4\pi^{3}} \cdot 4\pi k^{2} dk$$

$$\Rightarrow D(E) = \frac{V}{4\pi^{3}} \cdot 4\pi k^{2} \cdot \frac{dk}{dE}$$

$$E = \frac{\hbar^{2}k^{2}}{2m} \Rightarrow dE = \frac{\hbar^{2}k}{m} dk$$

$$\Rightarrow D(E) = \frac{V}{\pi^{2}} \cdot \frac{mk}{\hbar^{2}} = \frac{V}{\pi^{2}} \cdot \frac{m}{\hbar^{2}} \sqrt{E \cdot 2m} \cdot \frac{1}{\hbar}$$

$$\Rightarrow D(E) = \frac{V}{2\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{3/2} \sqrt{E} \quad (6.10)$$

- Bei der phononischen Zustandsdichte hatten wir gezeigt, dass

$$D(E) = \frac{V}{(2\pi)^3} \cdot 2 \cdot \int \frac{dS_E}{|\nabla_k E|}$$

$$|\nabla_k E| = \frac{\hbar^2 k}{m}$$

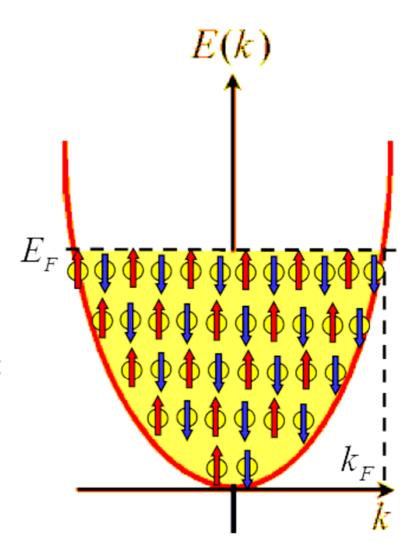
$$\Rightarrow D(E) = \frac{V}{(2\pi)^3} \cdot 2 \cdot 4\pi k^2 \cdot \frac{m}{\hbar^2 k} = \frac{V}{(\pi)^2} \cdot \frac{k \cdot m}{\hbar^2}$$
Wie oben!

Bemerkung : Phononen E~k \rightarrow g(E) steiler Elektronen E~k² \rightarrow D(E) flacher


VI.1.4 Fermi-Kugel

- -Lösung des Problems für ein Elektron nun bekannt
- -Auffüllen entsprechend des Pauli-Prinzips, so dass Gesamtenergie minimal bleibt d.h. bis alle N Elektronen verteilt sind :

$$E(\vec{k}) = \frac{\hbar^2 \vec{k}^2}{2m} = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 + k_z^2 \right)$$
$$= \frac{\hbar^2}{2mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$$


Jetzt sollen *N* Elektronen auf die Zustände verteilt werden.

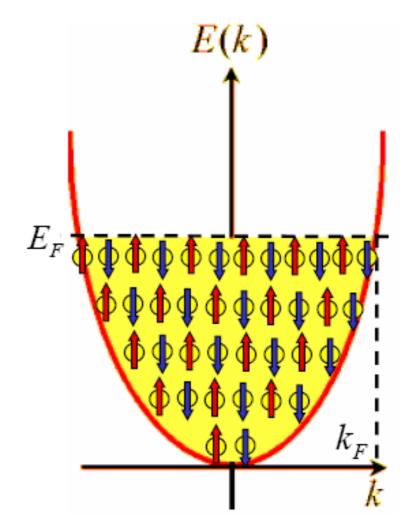
⇒ Auffüllen bis zur Fermi-Energie:

$$E_F = \frac{\hbar^2 k_F^2}{2m}$$

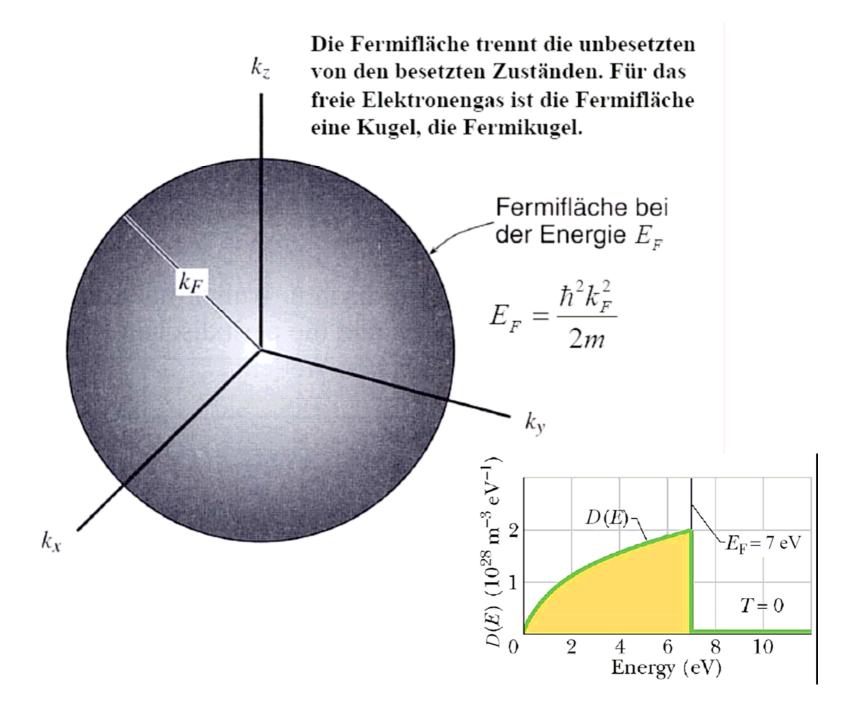
Enrico Fermi (1901 - 1954) Nobelpreis 1938

Elektronenparabel aufgefüllt bis zur Fermi-Energie

Fermi-Energie:
$$E_F = \frac{\hbar^2 \vec{k}_F^2}{2m}$$


$$N = \underbrace{2}_{\substack{\text{Spin-}\\ \text{Zustände}}} \cdot \underbrace{\frac{4\pi k_F^3/3}{\left(2\pi/L\right)^3}}_{\substack{\text{Zahl der Zustände}\\ \text{im } k\text{-Raum}}} = \frac{V}{3\pi^2} k_F^3$$

Elektronendichte: n = N/V


$$k_F = (3\pi^2 n)^{1/3}, E_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

Geschwindigkeit der Elektronen auf der Fermi-Fläche:

$$v_F = \frac{\hbar k_F}{m} = \frac{\hbar}{m} (3\pi^2 n)^{1/3}$$

Elektronenparabel aufgefüllt bis zur Fermi-Energie

Fermi-Energie: höchste besetzte Energie

Fermi-Fläche : Oberfläche im k-Raum mit $E(k)=E_{fermi}=E_{F}$

Fermi-Vektor : k_f mit $E(k_F) = E_F$ Radis der Fermi-Kugel

$$N = \int_{0}^{k_{F}} Z(K)d^{3}k = \int_{0}^{k_{F}} 2 \cdot \frac{V}{(2\pi)^{3}} \cdot 4\pi k^{2} \cdot dk = \frac{V}{(3\pi^{2})} \cdot k_{F}^{3}$$

 \Rightarrow

$$k_F = \left(3\pi^2 \frac{N}{V}\right)^{\frac{1}{3}} = \left(3\pi^2 n\right)^{\frac{1}{3}}$$
 (6.11)

Fermi-Vektor

$$E_F = \frac{\hbar^2 k_F^2}{2m} = \frac{\hbar^2}{2m} \cdot (3\pi^2 n)^{2/3}$$

Fermi-Energie

$$T_F = \frac{E_F}{k_B}$$

Fermi-Temperatur

$$\lambda_F = \frac{2\pi}{k_F}$$

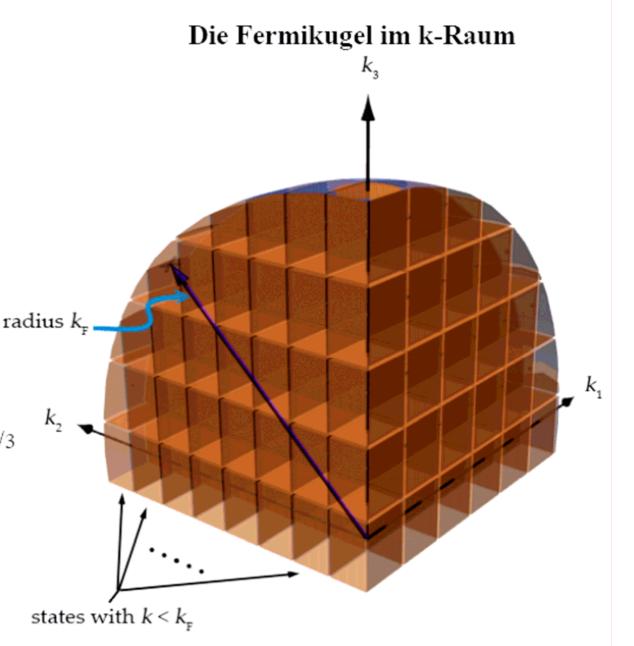
Fermi-Wellenlänge

$$v_F = \frac{\hbar}{m} \cdot k_F$$

Fermi-Geschwindigkeit

$$P_F = m \cdot v_F = \hbar k_F \tag{6.11'}$$

Fermi-Impuls


Ankarodnobud)

$$k_F = \left(3\pi^2 n\right)^{1/3}$$

$$E_{F} = \frac{\hbar^{2}}{2m} (3\pi^{2}n)^{2/3}$$

$$v_{F} = \frac{\hbar}{m} (3\pi^{2}n)^{1/3}$$

$$v_F = \frac{\hbar}{m} \left(3\pi^2 n \right)^{1/3}$$

$$k_F = (3\pi^2 n)^{1/3}, \quad E_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}, \quad v_F = \frac{\hbar}{m} (3\pi^2 n)^{1/3}$$

 \Rightarrow Alle Größen hängen nur von der Elektronendichte n ab!

Es gilt: $n = N_A \cdot \frac{Z \cdot \rho_m}{A}$ in der Einheit Elektronen pro cm³

 $N_A = 6.022 \cdot 10^{23} - \text{Avogadro-Konstante}$

 ρ_m – Massendichte in g/cm³

Z – Zahl der (freien) Elektronen pro Atom

A-Atommasse des Elements

Volumen pro (freiem) Elektron: $\frac{V}{N} = \frac{1}{n} = \frac{4\pi r_s^3/3}{1}$

$$\Rightarrow r_s = \left(\frac{3}{4\pi n}\right)^{1/3} = \left(\frac{3A}{4\pi N_A Z \rho_w}\right)^{1/3}$$

Fermienergien, Fermitemperaturen, Fermi-Wellenvektoren und Fermigeschwindigkeiten für typische Metalle*

Element	r_s/a_0	E_F (eV)	$T_F (10^4 \mathrm{K})$	$k_F \; (10^8 \; {\rm cm}^{-1})$	$v_F (10^8 {\rm cm/s})$
Li	3,25	4,74	5,51	1,12	1,29
Na	3,93	3,24	3,77	0,92	1,07
K	4,86	2,12	2,46	0,75	0,86
Rb	5,20	1,85	2,15	0,70	0,81
Cs	5,62	1,59	1,84	0,65	0,75
Cu	2,67	7,00	8,16	1,36	1,57
Ag	3,02	5,49	6,38	1,20	1,39
Au	3,01	5,53	6,42	1,21	1,40
Be	1,87	14,3	16,6	1,94	2,25
Mg	2,66	7,08	8,23	1,36	1,58
Ca	3,27	4,69	5,44	1,11	1,28
Sr	3,57	3,93	4,57	1,02	1,18
Ba	3,71	3,64	4,23	0,98	1,13
Nb	3,07	5,32	6,18	1,18	1,37
Fe	2,12	11,1	13,0	1,71	1,98
Mn	2,14	10,9	12,7	1,70	1,96
Zn	2,30	9,47	11,0	1,58	1,83
Cd	2,59	7,47	8,68	1,40	1,62
Hg	2,65	7,13	8,29	1,37	1,58
Al	2,07	11,7	13,6	1,75	2,03
Ga	2,19	10,4	12,1	1,66	1,92
In	2,41	8,63	10,0	1,51	1,74
Tl	2,48	8,15	9,46	1,46	1,69
Sn	2,22	10,2	11,8	1,64	1,90
Pb	2,30	9,47	11,0	1,58	1,83
Bi	2,25	9,90	11,5	1,61	1,87
Sb	2,14	10,9	12,7	1,70	1,96
* Die Eintrige der Tabelle wurden mit den Werten von er /ge aus Tab. 1.1 und m. = 9, 11, 10 ⁻²⁸ g					

^{*} Die Einträge der Tabelle wurden mit den Werten von r_s/a_0 aus Tab. 1.1 und $m=9,11\cdot 10^{-28}$ g berechnet.

$$\frac{d}{dr} = r_s = \left(\frac{3A}{4\pi N_A} Z \rho_m\right)^{1/3}$$

$$k_F = \left(3\pi^2 n\right)^{1/3}$$

$$k_F = \frac{1.92}{r_s} = \frac{3.63}{r_s/a_0} \mathring{A}^{-1}$$

$$v_F = \frac{\hbar}{m} k_F$$

$$v_F = \frac{1.92}{r_s} = \frac{4.20}{r_s/a_0} \cdot 10^8 \text{ cm/s}$$

$$a_0 = \frac{4\pi \varepsilon_0 \hbar^2}{me^2}, \quad E_0 = \frac{\hbar^2}{2ma_0^2}$$

$$E_F = \frac{\hbar^2 k_F^2}{2m} = E_0 \cdot (k_F a_0)^2$$

$$T_F = \frac{E_F}{k_B} = \frac{58.2}{(r_s/a_0)^2} \cdot 10^4 \text{ K}$$