Idealized Growth Modes in Homoepitaxy

- step-flow
- layer-by-layer
- mound formation
- self-affine

Fig. 6.20
Growth on Pt(111) - Overview

Fig. 6.21
Absence of self-affine growth of Pt on Pt(111)

5 ML of Pt on Pt(111) deposited at 50 K (no diffusion possible). Image size 35 nm x 35 nm.

Fig. 6.22
Diffusion of Ir adatoms on Ir(111); imaging with field ion microscopy

Fig. 6.23
Diffusion of Ir adatoms on Ir(111)

Fig. 6.24

FIG. 6. Diffusivity of Ir adatoms on Ir(111), derived from mean-square displacement of a single atom at different temperatures.
Interaction Between Nucleation and Growth

Figure 5.5. Schematic illustration of the interaction between nucleation and growth stages. The adatom density \(n_1 \) determines the critical cluster density \(n_i^* \), however, \(n_1 \) is itself determined by the arrival rate \(F \) in conjunction with the various loss processes which have characteristic times as described in the text (Venables 1987).
Pt Islands on Pt(111)
Island Density as a Function of θ and T for Pt Islands on Pt(111)

Island density as a function of coverage at 180 K

island density at coverage 0.1 ML

linear regression to STM data:

$$E_a = 0.26 \text{ eV}$$

M. Bott et al. PRL 76 (1996) 1304

Fig. 6.27
Step Edge - or Ehrlich-Schwoebel Barrier

\[\nu' = \nu e^{-\Delta E_s / kT} \]

\[\lambda \sim (v/F)^{1/6} \]

Fig. 6.28
The Zeno Model

vertical: \(v' = 0 \quad (v' \ll v) \)

\[\frac{\partial \theta_n}{\partial t} = F(\theta_{n-1} - \theta_n) \]

analytic solution:
\[\sigma = h^{0.5} \]
\[\lambda = \text{const.} \]
shape

Fig. 6.29
Nucleation on Top Terrace and Mound Profile for Finite Barriers

shape analysis:

\[\nu' = \nu_0 \frac{3}{5} \Delta \nu \]

\[E = 0.18 \text{ eV} = 7 \times 10^{-11} \text{ s} \]

\[S = 3.1 \text{ F L} \]

Poisson profile

Fig. 6.30
Reading Atomistic Parameters from the Morphology

Fig. 6.31
Zeno-Effect

\[\dot{x}(t) = -F \cdot x_0 \]

\[x(t) = x_0 (1 - F \cdot t) \]

\[x(t) = x_0 e^{-F \cdot t} \]

\[x(\frac{n}{F}) = x_0 e^{-n} \]

\[d(n) = d_0 10^{-3n} \]

Fig. 6.32
Examples

10 ML 300 K
3000 Å

25 ML 420 K, CO
3200 Å

300 ML 440 K
3500 Å

≈ 19 ML pentacene on amorphous substrate
40000 Å

Fig. 6.33
Pulsed ion assisted homoepitaxy on Pt(111)

400 K, 5ML

2130Å

no ion pulses

4 keV Ar\(^+\) ion pulses in ML-timing, fluence each 0.003 ML

Fig. 6.34